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Chapter 1

Introduction

Case-Based Problem Solving is based on the idea that problem solving should re-use solutions
and other information from previously solved problems instead of relying solely on a base of
procedures or rules. We present a case-based design system, CADET, that functions as a
designer's assistant for mechanical design. CADET retrieves and re-uses previous successful
designs while avoiding previous failures such as poor materials or high cost. The system uses
certain behavior-preserving transformation techniques to transform an abstract description of the
desired behavior of the device into a description that can be used to find relevant designs in
memory. This approach, in effect, decomposes given behavior specifications into "sub-
behaviors", making it possible to recognize parts of previous designs that can be synthesized to
form a new device. Currently, the system can perform conceptual design of mechanical devices
that exhibit continuous and reciprocating behavior. In addition, since CADET can generate a
wide variety of behaviorally equivalent alternative designs for a given set of design
specifications, it can be used as a designer's brainstorming assistant.

Case-Based Reasoning (CBR) is the problem solving paradigm where previous experiences are
used to guide problem solving [5, 29, 57, 61, 17]. Cases similar to the current problem are
retrieved from memory, the best case is selected from those retrieved and compared to the
current problem. The precedent case is adapted to fit the current situation based on the identified
differences between the precedent and the current case. Successful cases are stored so they can
be retrieved and re-used in the future. Failed cases are also stored so that they will warn the
problem solver of potential difficulties and help recover from failures. If a current case has
features similar to a past failure, then the problem solver is warned not to attempt the failed
solution. After the problem is solved, the case memory is updated with the new experience.
Thus, learning is integrated with problem solving.

We have identified some characteristics of domains where CBR is applicable.
1. An expert knows what he/she means by a case.

2. Domain experts draw inferences from comparing a current problem to cases.

3. Experts adapt cases to solve new problems.

4. Cases are available in bibliographic sources, in experts' memories, or can be
recorded as new solutions are attempted.
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5. There are means in the domain to assign an outcome to a case, explain it and deem
it a success or a failure.

6. Cases can be generalized to some extent. Features that make them relevant can be
abstracted.

7. Comparisons can be implemented computationally with some level of
effectiveness.

8. Cases retain currency for relatively long time intervals.

9. The domain may, or may not have a strong model.

10. Cases are used in training professionals in the domain.

Engineering design meets all the above criteria. In particular:
1. A case is a previous design of an artifact.

2. Design experts generate designs largely from prior cases, and use analytical models
to verify that the generated design meets its specifications.

3. Design specifications, simulation, and prototyping results guide adaptation of
design cases.

4. Design cases are readily available in design catalogs and record books. The
catalogs provide information about a wide variety of devices, their parts,
characteristics, materials, uses and behavior. Companies that keep records of the
designs they generate, try to re-use the designs when similar tasks or problems are
encountered.

5. Simulations, prototypes, and field tests are means by which designs are tested and
evaluated.

6. Dissimilar structural configurations can deliver the same behavior. Hence,
behavioral descriptions are natural abstractions in design. (Section 4 presents our
approach that is based on behavioral abstractions).

7. Case comparisons and adaptations can be done effectively (Sections 5, and 6
present a system that addresses these issues).

8. Designs retain currency for long periods of time. For example, the basic design of a
toaster has not changed for 10 years. Technological innovations may cause design
adaptations.

9. Despite the existence of physical laws and principles, design is a creative and
poorly understood process.

10. Engineering students are taught design through the use of numerous cases. When
an entry-level engineer joins a design office, an important part of his training
involves going through the design records of previous projects.

Although engineering design is a domain amenable to case-based techniques, many challenging
issues must be addressed. First, is the issue of relating behavior and structure. During the design
process, a designer transforms an abstract functional description for a device into a physical
description that satisfies the functional requirements. In this sense, design is a transformation
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from the functional domain to the physical domain. In order to effect this transformation, a
designer needs to reason at different levels of abstraction ranging from the physical to the
functional. For example, while trying to produce a design to perform a particular function,
functional descriptions may be used to retrieve cases. However, using a case to physically
synthesize the design, involves extracting appropriate physical features from the case. To
support such reasoning, it is necessary to develop design case representations in terms of
vocabularies that express and capture relationships between device function, behavior and
structure [65]. In addition, we need inference strategies that can utilize these representations and
integrate the results. Second, good mechanical designs are often highly integrated, tightly
coupled collections of interacting components with no obvious decomposition of the overall
function into subfunctions. Previous cases can represent good solutions to these interactions and
can be profitably re-used. The major challenge for this issue is developing indexing schemes in

terms of tightly coupled design features. Third, the initial functional description of the artifact is
usually underspecified so that a designer must have means to identify information "gaps" during
the design process and generate new problem solving subgoals to resolve them. In a case-based
framework, these dynamically generated subgoals can give rise to indices for retrieving cases to
fill the gaps. This is a common problem in design and was encountered in the development of
one of the first applications of CBR to engineering design [43]. Fourth, a complete design is

synthesized from solutions to subproblems that capture desired subfunctions of the artifact.
These subproblem solutions can be expressed as pieces (snippets1) of previous designs that must
be independently accessible. In addition, the behavior exhibited by the combination (synthesis)
of the retrieved snippets must be equivalent to the desired overall device behavior. Considerable
complication arises from the fact that although a design might be verified to be correct at the
behavioral level, simulation at the physical level might fail. The problem solver must synthesize
device pieces at one level of abstraction while making sure the parts will work together in
physically correct ways. In addition, verifying that each component part meets its specifications
does not guarantee that the design as a whole will meet its specifications. Thus, both partial and
complete designs must be verified.

We have developed a system, called CADET, that performs conceptual design by synthesizing a
device from snippets accessed from previous design cases. CADET uses a multi-layered
representation to express function, behavior, structure and related constraints. Case
representations are distributed between an object oriented system and a commercial relational
database. We have developed a fast algorithm that allows us to perform case matching using
embedded-SQL commands. The case base is currently populated with about 75 cases. About a
fourth of these cases are taken from the book The way things work. The rest are taken from
commercial catalogs recommended to us by designers. These include Level and Flow Sensors
(Flowmem Industries) and the Fluidpower catalogs and handbooks from Parker Industries.

tAs coined by Janet Kolodner
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1.1 Design
Design is the process of generating a description of an artifact that satisfies given specifications
(goals and constraints) which describe the desired function of the artifact. Design can be viewed
as a transformation from the functional domain to the physical domain [40, 58, 52]. In order to
effect such transformations, a problem solver must be able to reason at different levels of
abstraction from the functional to the physical. Such reasoning remains opaque in the domain of
mechanical systems design since the transformational process is neither well-characterized nor
understood. This is partly due to the fact that, in contrast to other design domains such as
software engineering and circuit design [42], good mechanical designs are often highly
integrated, tightly coupled collections of interacting components [60, 741. A simple and obvious
correspondence between specific functional requirements of the artifact and individual
components in the design does not usually exist. For example, in a can opener, the circular
blades perform the function of holding the can, rotating it and cutting off the top. Ironically,
these are also the major functions of the entire can opener. It is not possible to identify specific
features of the can opener or its blades which perform each of the functions independently.

Due to the tightly coupled and interacting nature of mechanical designs, reasoning from prior
design cases is proving to be a suitable design methodology as opposed to direct "decompose and
recombine" strategies that have successfully been utilized in VSLI design [58, 72]. Case-based
problem solving is based on the premise that a machine problem solver make use of its
experiences (cases) in solving new problems instead of solving every new problem from scratch
[29]. Design cases reflect good design principles, such as function sharing [60] and incorporate

decisions that take advantage of, or compensate for incidental components interactions. Our
investigation has been conducted within a framework of a case based reasoning methodology for
mechanical design and has been implemented in the CADET system (Case-based Design Tool).
CADET operates in the domain of hydro-mechanical devices such as faucets, flush tanks, valves,
and pumps. It has a memory of previous designs and components 2 that guide the design process
in producing new designs. Cases are represented using a multi-layered representation which
includes structural features of the artifact, functional features and relations, and linguistic
descriptors. Cases can be retrieved from memory using a variety of indices corresponding to the
above mentioned features.

The case memory stores both devices and device components as cases. The cases have
associated descriptions both in terms of behavioral 3 and structural characteristics. If parts of the

2We use the word "component" to refer to cases, or pieces of larger cases that may perform subfunctions of a
particular device but are not necessarily standard components.

3In this paper, we concentrate on the physical behavior of devices. Though we use the words function and
behavior interchangeably; the function of a device strictly refers to the way it interfaces with the outside world. For
example, a watch has the behavior of moving it's hour and minute hands, while it has the function of telling time.
Many devices can have the same function but may have different behaviors. For example, digital watches and
sun-dials also tell time.
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behavioral specification of the desired design correspond to the behavioral indices of the
components, then the components (and hence their structural descriptions) can be directly
accessed. However, because there is no one-to-one correspondence between the desired
behavior of a device and the individual component behaviors, it is often not possible to find
relevant cases by using the given overall behavioral specification as an index into case memory.
This gives rise to the need for techniques to transform an abstract description of the desired
behavior of the device into a description that provides indices with which relevant components
can be retrieved. One way to do this in the domain of mechanical systems is to use
transformations that convert the given specifications into alternative forms that facilitate the
identification of relevant components and the subsequent realization of the design.

Behavior preserving transformations require formal representations of the behavioral
specifications of mechanical systems as well as formal representations of behavioral
characteristics of mechanical components. The representation that we use is the language of
qualitative physics [33]. Qualitative physics has predominantly been used in analyzing the
behavior of existing systems. We, however, use these techniques for the design of new systems
by transforming given behavior specifications. The transformational approach decomposes
given behavior specifications into "sub-behaviors" whose composition preserves the overall
desired behavior. The decompositions do not impose any a priori structure or topology on the
physical realization of the design. The decompositions are collections of sub-behaviors with
information on how the sub-behaviors must interact to produce the overall device behavior. In
effect, we do not require an a priori decomposition of design specifications.

To accomplish the task of extracting relevant portions of a design, the problem solver must be
able to recognize that the flush tank's behavior can be achieved by combining relevant "sub-
behaviors" some of which are also present in the faucet. In other words, the relevant capability
of the problem solver is to recognize shared "sub-behaviors" among devices which are not given
a priori.

We present an approach to accomplish recognition of shared "sub-behaviors" based on behavior
preserving transformations that uses and extends qualitative reasoning about physical systems.

The rest of the paper is organized as follows: the next section provides an overview of our
approach to case-based design. Next, we present a graph-based representation of behavior and
discuss some properties of the representation. This is followed by a presentation of the notion of
behavior preserving transformations, and a discussion of how these transformations serve as
design rules that help generate synthesis strategies. Finally, we will examine the underlying case
matching and behavioral-constraint checking methods. An extended conceptual design example
outlining the problem solving steps taken by CADET is presented in the first appendix. The
second appendix provides assumptions and proofs underlying the transformational approach
used in CADET.
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1.2 Overview of Case Based Design
Designing is pervasive in many human activities, for example an engineer conceiving of a new
type of toaster, two parties negr, -iating a contract, a financial manager configuring a profitable
portfolio, or a chef concoct'..g a new dish. Underlying these design tasks is a core set of
principles, rules, laws and techniques which the designer uses for problem solving. The
designer's expertise lies in his ability to use these techniques to produce a feasible design. The
designer's expertise is a consequence of his experience and training, much of which is based on
previouw exposure to similar design problems. This is particularly true in our domain of interest:
engineering design [48, 16, 19].

How important are cases in Engineering Design? Cases are the primary way in which
engineering students are taught to design. This is because there are no general algorithms for
design. Typically, students are exposed to numerous cases and examples which illustrate how
complex problems are solved. Even when an entry-level engineer joins a design office, an
important part of his training involves going through the design records of previous projects.
Although the engineering design community recognizes the importance of cases in problem
solving, the use of precedent cases in Computer-Aided Engineering (CAE) tools has been largely
ignored. This is not because the CAE research community is not aware of the ubiquity of case
based reasoning in design, but because they have not had access to the right techniques.

A typical CAE tool for design includes a geometric modeling system and a standard set of
analytic tools for tasks such as finite-element and boundary-element analysis. Over the last five
years, design tools have been extended to include some design heuristics. These heuristics come
in several forms: as rules, as constraints and as recommendations. It is only very recently that a
third aspect of the design process, the use of past cases, is beginning to be recognized in the
Design Automation literature [41, 11, 73, 23, 42, 35, 45, 22]. Cases provide memories of past
solutions that have been used successfully. They also provide memories of past failures and
repairs which can be used to warn the problem solver of impending problems and to repair
failures without having to work from scratch [17, 28, 62, 63].

Another advantage of case based design is in the area of knowledge acquisition. We have found
that asking a designer to give us examples of cases he has worked on, is much easier than asking
him to give us a. list of rules that he uses to design. There is experimental evidence that
designers don't explicitly think in terms of rules [56]. In addition, design case studies are also
readily available in the literature. Based on interviews with designers we have identified certain
commercial catalogs of hydromechanical devices. These catalogs provide information about a
wide variety of devices, their parts, characteristics, materials, uses and behavior. We are using
these catalogs as sources of cases. The case base is populated with about 75 cases. About a
fourth of these cases are taken from the book The way things work. The rest are taken from
commercial catalogs recommended to us by designers. These include Level and Flow Sensors
(Flowmem Industries) and the Fluidpower catalogs and handbooks from Parker Industries.

There are two broad groups of issues that must be addressed in any case-based reasoning system:
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(1) how to represent and index cases in the case memory, and (2) how to use ca-ses in problem
solving. Previous research in index determination in the CBR literature [26, 18] has identified
goals as well as object attributes as general classes of features that can be used as indices. Since
artifacts always have intended functions, the functional specification gives rise to a set of related
indices.

In dealing with physical domains, a case based problem solver must be able to work at several
levels of abstraction ranging from the physical to the functional level. For example, while trying
to produce a design to perform a particular function, functional descriptions may be used to
retrieve cases. However, to use a case to physically synthesize the design involves extracting
appropriate physical features from the case. This requires that the representation be able to
capture the relationship between physical form and qualitative function. CADET uses a multi-
layered representation that gives rise to related indices. The representational abstractions that are
used for indexing the case memory are: (1) Linguistic descriptions, (2) Functional Block
Diagramming, (3) Qualitative influence graphs, and (4) Qualitative States [66]. This case
representation is distributed between an object oriented system and a commercial relational
database manager. We have developed a fast algorithm that allows us to perform case matching
using embedded-SQL commands.

The CADET system has a synthesis module, an evaluation module and a knowledge base
organized around a design black-board which is managed by a Control Module. The Control
Module has access to three types of synthesis methods: rule-based, case-based and search-based.
The case synthesis sub-module can accept a design from the Design Black-Board and add new
components drawn from cases in the Case Knowledge Base. Synthesized alternatives are
evaluated in the Evaluation Module through the use of cases, qualitative simulation, and
constraint checking. If bugs or "gaps" are found in the design alternatives, they are either
considered for debugging or are discarded. The process of case based design consists of the
following steps that are iteratively applied as new subgoals are generated during problem solving
[65, 67]. Though we present these steps sequentially, they are interleaved during problem

solving.
1. Development of a Functional Description. At the simplest level, the desired artifact

can be viewed as a black-box which takes certain inputs and produces desired
outputs. The function of the black-box is described by qualitative relations
explaining how the inputs and outputs are related. The system's job is to realize an
artifact which will convert the inputs into the desired outputs.

2. Retrieval of Cases. A set of design cases (or case parts) bearing similarity to a
given collection of features are accessed and retrieved. Retrieval is performed
using not only the existing features of the input specification, but also indices
arising from index transformation strategies (the focus of this paper).

3. Development of a Synthesis Strategy. A synthesis strategy is a description of how
the various cases and case pieces will fit together to yield a working design.

4. Physical Synthesis. Realization of the synthesis strategy at a physical level. This
is a difficult problem since undesirable interactions among case parts may occur.
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In addition, since it is very rare to retrieve cases that exactly match the design
specifications, cases and case pieces must be physically modified before actual
synthesis.

5. Verification. Adverse interactions could lead to non-conformance of the design to
the desired specifications. This is verified through quantitative and qualitative
simulation. If the simulation is correct, and if all the constraints are satisfied, then
the design is successful. If not, repair (next step) is attempted.

6. Debugging. Debugging involves a process of asking relevant questions and
modifying them based on a causal explanation of the bug. These questions serve as
cues into memory.

1.3 Relationship to other work
A variety of CBR techniques for case representation and reasoning in design have been
suggested in the literature: (1) Causal representation of prior design problems and solutions in
the architecture domain was used in the CYCLOPS system [43]. Such causal networks have also
been used in the medical domain [32]. (2) In the meal planning/design domain, JULIA uses plans
and sub-plans represented as frames with slots for the different courses of the meal [20]. In the
engineering design domain, deep models have been used successfully [55]. We will discuss and
compare five systems: (1) Architectural design systems STRUPLE and ARCHIE. (2) Motion
synthesis by connecting the inputs and outputs of primitive mechanisms. (3) Ibis, a system that
connects a given set of primitives to satisfy a given goal4 (4) The behavioral component-
substance based modeling and reasoning in KRIT=K.

In STRUPLE, experience is stored in the form of descriptions of building design solutions [35].
Matching is done using a similarity metric that compares significant common aspects of the
matched buildings arid the current building. A matching criteria is a requirement of similarity
imposed on a feature of a matching building. For example, the number of stories, the intended
use, the design wind load etc. Each matching building is ranked to measure how well it
resembles the current building according to both required and desired criteria. The method is
similar to measuring the relative error of two function values. STRUPLE's similarity metric is
based on a fixed set of criteria that does not consider the rationale involved in the decision
process. Since it involves only specific domain features, STRUPLE's index mechanism is
unable to find analogies across domains. The ARCHIE system is an architectural design system
for office buildings [14]. It also uses a flat, frame based representation of cases (there is no deep
reasoning about shape and form). ARCHIE's contribution lies in its use of qualitative domain
models for retrieving cases. For example, it has a model of how various features of an office
space (e.g. wall color, lighting quality) affect the lighting quality of the built environment. Such
a model can be used to evaluate a design concept and to retrieve all prior cases where a similar
problem was encountered. This idea is similar to how causal models were used in the

41bis goes beyond motion synthesis by including functional parameters such as pressures and flow rates.
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CYCLOPS system that retrieved cases to debug landspace architectural layouts. For example, a
noise problem may be fixed by using trees or acoustic barriers taken from a prior case.

CYCLOPS, however, used ad-hoc models for each case. ARCHIE, on the other hand, is able to
work with several, central domain models. This makes the approach more general.

Mechanical designs can be viewed as being synthesized from conceptual building blocks that
perform specific kinematic functions [311. The motion synthesis approach provides a method for
recognizing a given behavior in terms of known primitive behaviors. This is one of the f'rst
formalized ways of viewing design as the synthesis of kinematic processes, however, the
approach is limited to a fixed set of primitives. CADET, on the other hand, is able to reach into
a large casebase and select pieces of cases dynamically. The notion of synthesizing devices from
known components is extended beyond basic kinematics in the Ibis system [78, 791. In Ibis,
components are represented as sets of interactions among behavioral parameters of the
component. This approach allows one to use any aspect of a behavior, not restricting behavior
descriptions to just one domain (e.g. qualitative motion synthesis). Ibis' major drawback is that
its problem solving ability depends on the syntactic form of the goal. Because the program
suffers from a Functional Fixedness [36, 8], it cannot recognize behavioral equivalence between
a given index and a case if they are not syntactically similar. CADET's transformation based
approach, on the other hand, adequately addresses this problem. If CADET cannot find a direct
equivalence, it looks for behavioral similarities. Through the process of influence hypothesis
and matching, the system is able to use physical laws and principles embedded in prior design
cases to achieve its current goals. In this way, CADET is opportunistic about the principles it
exploits in a design. This is unlike other approaches which assume that all the relevant
principles have been identified a priori, as in the Ibis system. Because CADET hypothesizes
influences, it does not limit itself to the given knowledge. Consequently, it can generate
elaborations that represent designs that have never been conceived of before. Further, CADET's
ability to recognize behavioral equivalences reduce its sensitivity to the form of the problem
description.

KRITIK is another deep model based design system [12]. It uses a component-substance model
that captures the components (e.g. battery, pipe), substances (e.g. water, electricity) and relations
(e.g. containment, connection). Behavior of such systems are represented as graphs of states and
transitions. When the system is given a design task, it retrieves the best case and deduces
modifications that can be made. Modifications involve changes in relations, substitution of
substances, parametric changes of components etc. The CADET approach is quite different. We
use a representation that has no structure in the behavior description. This allows us to transform
behavior descriptions in a principled way. We believe that the space of elaboration of behaviors
is complete (proving this is a whole dissertation in itself.) Another advantage of not commiting
to structure, is CADET's ability to mix, match and re-use whole and parts of many prior cases to
solve a given problem. The use of multiple cases has been shown to be important in advanced
CBR systems [50].
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Currently CADET can perform conceptual design synthesis of continuous and reciprocating

devices. It cannot synthesize a new feedback design from components that do not have any

feedback. If however, CADET's casebase were to contain feedback devices, it will be able to

retrieve and use them. We are currently extending the transformational synthesis approach to

feedback devices.
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Chapter 2

Case Based Reasoning in
Engineering Design

Design is not done in a vacuum. Engineers often rely on prior designs to make new design
decisions instead of solving every new problem from scratch. Prior designs that represent good
solutions to the tightly coupled nature of mechanical devices are used as guides. Moreover, prior
failures are used to avoid repeating old mistakes. In this paper we present a computer based
approach to exploiting the knowledge embodied in prior designs. Reasoning from design cases
requires the ability to use cases, or pieces of cases that realize subfunctions of the device being
designed. It is, however, difficult to recognize and retrieve relevant cases or case pieces using a
given design specification. Because there is no one-to-one correspondence between the desired
behavior of a device and the individual component behaviors, it is often not possible to find
relevant design cases by using the given overall behavioral specification as an index into case
memory. We approach this problem by elaborating the given behavior specification into a
description that gives rise to indices with which relevant components can be retrieved. The
elaborations are carried out in a behavior-preserving manner using two transformation operators
that (a) rely on physical laws if it is known which ones are relevant, or (b) hypothesize behaviors
and then search the case memory for ways in which the required behaviors may be achieved.
These two approaches are used opportunistically in CADET, a case-based mechanical design
system.

2.4 Representing Behavior in Design Cases
In dealing with physical systems a reasoner needs to retrieve cases based not only on the
physical attributes of a device but also on its functional behavior [13]. CADET represents
designs at several levels of abstraction ranging from the physical to the functional level [66].
Behavior is represented in terms of qualitative influences.

2.4.1 Behavior and Influences
In CADET, device behavior is represented as a collection of influences among the various inputs
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and outputs5. An influence is a qualitative differential (partial or total) relation between two
variables one of which is a dependent variable and the other an independent variable. The notion

of influences is based on the notion of confluences [6] and causality [24] in device behavior.

Influences are organized as graphs. In general, an influence graph is a directed graph whose
nodes represent the variables of concern and whose arcs are qualitative values depicting the
influence of one variable on another. These graphs of influences are used to represent the
behavior of devices, where each influence corresponds to some physical law or principle.

Consider, for example, a household water tap that has two inputs: a water source and a signal to
regulate the rate of flow of water. In the two and a half dimensional representation [74] that we
have adopted, the tap is represented as a pipe with a gate as shown in Figure 2-1. The flow rate
is given by Q and the position of the gate is given by X. The position of the gate controls the
flow rate. This behavior is represented as an influence Q - X, which is read as follows: "The
flow rate (Q) increases (+) monotonically with an increase in the signal (X)". This influence
represents the "tap" principle.

XT t orifice

I bzý 0 6 - X

Influences

Figure 2-1: A simplified water tap

At a more detailed level, the influences correspond to standard physical laws and effects [21].
The tap's detailed behavior, as shown below, is composed of the following influences: (1) As the

5The domain within which the proposed transformational approach has been investigated is a class of meci-,ýiical
devices which alter the physical properties of input materials upon being activated by either an external or an
internal mechanical signal. Such devices control the parameters of given processes. An assumption we make is that
the process already exists. We do not consider devices which create processes. For example, in a water tap it is
implicitly assumed that liquid flow is already present. We do not reason about the process itself [101, but about
devices that use the processes. Based on these assumptions, devices can be viewed as black-boxes which take inputs
and produce desired outputs. In the physical domain, three types of inputs and outputs have been identified: signals,
energy and materials [48].
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gate is opened, its position (X) influences the Orifice size and, (2) the total flow of water (Q) is
influenced by the Orifice size and the Pressure difference. The first influence is based on rigid-
body motion and follows from the definition of an orifice. The second set of influences are
based on Bernoulli's theorem.

Q Orifice -.-*_ x

Pressure

Sets of qualitative influences can be combined to capture the behavior of more complex devices.
The see-saw shown in Figure 2-2 has three major behavioral parameters: Q, the angular position
of the see-saw and the positions of the two ends of the see-saw (XI and X2). The main
influences are X1 +-- 9 , X2 Q •2 and X2 - XI . These influences form a directed

graph.

4-XI

It 0 _j~ 2

Seesaw

Figure 2-2: A see-saw
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2.4.2 Total Influences
Quantities can have multiple influences on one another. If there are multiple paths from some
node B to a node A, and if all the paths are positive (or negative), then the total influence of B on
A is positive (or negative).

If, however, the paths are not all of the same sign, then the total influence can be either positive,
negative or zero. This depends on the actual magnitudes of the influences. As CADET does not,
as yet, reason about magnitudes, the decision on the final outcome is left to the designer. In
design, it is sometimes useful to have zero total influence by making positive and negative
influences cancel one another. This is different from the non-existence of an influence between
quantities. For example, if there are multiple paths from B to A, and if there is at least one path
with an influence of opposite sign to the other paths, then B could be made independent of A by
proportionately adjusting the magnitudes of the influences.

Let's re-consider the hot-cold water faucet. The behavior of this device can be viewed as the
combination of known behaviors. For example, the hot-cold water faucet's behavior can be
represented as shown below (Figure 2-3). Two input signals St and Sm control the mix
temperature and the mix flow-rate. When St is increased, then the total quantity of hot water Qh
increases. At the same time, due to the see-saw principle, the signal Stl decreases, causing the
total quantity of cold water to proportionately decrease. Hence, as shown in the influence
diagram, when St increases, the mix temperature Tm increases. The two influences are:
Tm <--- Qh *-± XI - St and Tm <- Qc i X2 +-j- Stl - St. The total
influence of St on Tm on both paths is positive.

As St is a temperature control signal, it is not supposed to change the total flow rate (Qm) while
the temperature of the mix (Tm) is changed. In the influence graph, the total influence of St on
the mix flow-rate Qm is zero. This is done by canceling the total positive and negative
influences. As shown in the influence graph, there are two paths from St to Qm:
Qm + Qc 4-•-- X2 +- StI +- St and Qm + Qh + X1 4-±t St. The first path
has a total negative influence and the second path has a total positive influence. By adjusting the
magnitudes of the influences, we can achieve total zero influence. Physically this implies that
the see-saw's fulcrum is placed exactly in between the two taps.
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Tap Tap
T- pipe ~mT

T-pipe Tap Seesaw

Tap Rigid-body
translation

Figure 2-3: Faucet's Influence Graph

The notion of influence graphs is a very general one. It applies to any domain in which behavior
can be characterized as a set of quantities that relate to one-another. Consider an example from
the labor relations domain. We know that a company's profitability is influenced by the market,
product quality, and productivity. In turn, productivity is influenced by technology and labor
morale. Further, a worker's morale may be influenced by salary, benefits and job-security [61].
Given such an influence graph, it is possible to predict possible outcomes of given perturbations.

In CADET, influence graphs are used to represent the behavior of devices. When this
representation is incorporated in a device case base, it becomes possible to retrieve cases which
match given behavior specifications. If retrieval using the design specification fails to retrieve
relevant cases, the system should be able to recognize how a combination of component
behaviors could produce the required effect.

2.5 Index Transformation
Most existing case-based systems use a pre-defined set of indices to access cases in memory.
This indexing strategy is limiting since salient features of the current case which could constitute
good indices may not directly match the pre-defined index set. Index transformation is a way to
change the given salient features of the current problem to match the indices under which
previous cases have been stored, thus making accessible to the problem solver previously
inaccessible cases. The transformation technique described here is applicable to any domain in
which behavior can be modeled as a graph of influences.

We will now examine two rules which are used to transform given goals into more elaborate sets
of influences that are behaviorally equivalent to the goal. The hypothesis is that, if one cannot
find a case relevant to a given goal, then it might be possible to find several cases or parts of
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cases that are relevant to elaborations of the given goal.

2.5.1 Two Rules for Reasoning about Influences
1. The function of function (chain) theorem. Let u =f(x, y), where x and y are independent
quantitative variables with respect to u. Let z= g(u,v) be another quantitative function. Then,

[-z]=•x [•-1z [-1]•

TX 5U ax

Where, the square brackets ( [])indicate a qualitative operator. The operator returns +, - or 0
when the numerical value of the expression within the brackets is more than, less than or equal to
zero respectively. The arithmetic operators are also qualitative.

2. The total influence theorem. Let z = f(p, q) be a continuous quantitative function. Then the
total influence

[AZI = [IZ DzI [AP)] + [ az] x Aqa =q

The total influence gives the net qualitative increment in the dependent variable as the
independent variables are changed.

Two analysis rules arise directly from these theorems (Proofs in Appendix B):

Analysis Rule 1. If some quantity x is known to influence u and if u is known to influence z then
one can infer that x influences z.

Analysis Rule 2. If p and q are known to influence z and if x is known to influence p and q, then
one can infer that x influences z.

The two analysis rules can be applied to influence graphs to derive new influences. Repeated
application of these rules will generate new influences that exist in a given system, but may not
have been explicit. For example, consider a kitchen sink with two taps pouring water into it
(Figure 2-4). The flow rates of the two streams of water are QI and Q2 and the depth of water in
the sink (at equilibrium) is D. The influences on D are: D <-• Q1, D <-- Q2, where Opl

and Op2 are both positive influences. The rate of flow out of the sink (Q3) is influenced by the
depth of water D: Q3 < D where, Op3 is positive.

From the first analysis rule we can conclude that the input flow Q1 will influence the total
outflow Q3 as Q3 <2.._opo3 Q1. In other words, an increase in QI will cause the rate of flow

through the drain Q3 to increase. The sign of the influence is the qualitative multiplication of
OpI and Op3.

The analysis rules can be used to propagate influences and analyze the behavior of systems as
shown above. A detailed description of how qualitative methods may be used to perform
simulations is presented in [34]. We are, however, interested in using the rules for design, rather
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00

Figure 2-4: Kitchen Sink with two flow inputs

than analysis. We do this by applying the two rules in reverse. The intuition is that design is the
inverse of analysis. In analysis, the artifact is given and one has to derive the behavior. In
design, on the other hand, the desired behavior is given and one has to come up with the artifact.
Here are the two design rules:

Design Rule L If the goal is to have x influence z, and if it is known a priori that u influences z,
then the goal could be achieved by making x influence u.

Design Rule 2. If the goal is to have x influence z and if it is known a priori that some two
quantities p and q influence z then, the goal could be achieved by making x influence p or q, or
both.

The two design rules transform a given influence into a more detailed set of influences which are
behaviorally equivalent to the original influence. As transformation operators, the first rule
yields a serial transformation and the second one yields parallel transformations.

Before embarking on the details of how the design rules are used, here is an overview of how the
rules are used in behavioral synthesis:

1. The initial behavior specification (the goal) is used as an index into the case base.
Exact matching is first attempted. An exact match occurs when the variables and
the sign of the influences are the same. If such a match is not found, then a partial
match is attempted.

2. If no cases are retrieved, the goal is transformed using the two design rules. This is
first done using the given domain principles.

3. If constraints on the behavior have been specified, then the generated transforms
are checked. Violating transforms are pruned off the search tree.
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4. The transformed influences are used as indices to find matching cases or parts of
cases in the case-base.

5. If no cases are found, or if only part of the goal influences are found to match
cases, the goal influences are elaborated by hypothesizing influences.

6. Once again case retrieval is attempted. This time, however, hypothesized variables
have to be bound to the variables in the cases.

7. If all the influences in a transformed index are not matched to cases, further
transformations are attempted. This step is controlled by the user. At any stage,
the user may stop the transformations and try to fill in the gaps from his or her own
experience.

2.6 Using the design rules
The design rules are used to transform goal influences into more elaborate influence graphs. In
CADET, the transformation is done in two ways: (1) by using domain laws and, (2) by
hypothesizing new variables.

2.6.1 Using Domain Laws
The influences implied by domain laws may be used to elaborate given goals. For example,
assume it is our goal to achieve the influence: z -- x, also assume that there are no known
designs that can achieve this effect directly. If, however, there is some domain principle which
states that a quantity u influences z, then the goal may be achieved by having x influence u. The
goal is hence elaborated to: z - u - x. This new influence graph is used as a new index
into the case base. If cases or part of cases with influences that match the goal are found, they
are retrieved and used.

Reconsider the kitchen sink example (See Figure 2-4). Let's say we want to design something
which will allow us to control the total outflow Q3 with respect to some external physical signal:
Sig. The required (goal) influence is Q3 +-zL- Sig. This influence can be transformed by
finding what factors influence Q3. From the Law of Conservation of Mass we know that:
Q3 = Q1 + Q2 at equilibrium. Using symbolic calculus the following influences are derived
from the law: Q3--•-- Q1, Q3 + Q2. Influences between QI and Q2 are not used as they
are specified to be independent variables. It follows that the variable Sig can be made to
influence Q1 or Q2, and hence influence Q3 indirectly. There are three possible influences (a)
the original influence Q3 * Sig, (b) the first indirect influence: Q3 +-L-- Q1, Q1 +-±- Sig,

and (c) the second indirect influence: Q3 : Q2, Q2 + Sig. Combinations of the above
influences yield possible transformations. Combinations include selecting any one influence,
any two at a time or all three. This gives us seven combinations including the original influence.
These elaborations can be used to retrieve cases.

Let's pick the influences Q3 +-t- Q1 and Q1 + Sig. The first influence need not be
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designed for as it is already part of the given kitchen sink. The second influence matches the
influence Q <-- X in the tap case (Figure 2-1). The nodes Q and QI match because they are
both flow rates and X matches Sig because they are both physical signals. The matching code
uses object and concept class hierarchies to perform such matches. After the tap is retrieved, it
may be used to yield the design in Figure 2-5.

1 Sig

0 2

Tap

03

Figure 2-5: Kitchen Sink with a Tap

2.6.2 Hypothesizing new variables
If the given domain laws are unable to find elaborations that can be realized by the cases in
memory, one can try to hypothesize variables. The idea is to hypothesize new influences and
then find cases which may be used to achieve those influences. For example, the goal z (-x
may be elaborated to z - Varl -- x using design rule 1. A new variable Varl is
hypothesized as an intermediary. The elaboration is then used to find cases in memory. This
time however, the system looks for two influences which match the goal and bind the unknown
variable Varl.

As new variables are introduced, corresponding new influences are hypothesized. In addition, as
influences are all supposed to be based on physical laws or principles, the introduction of new
variables implies that laws or principles, unknown to the program, are being hypothesized. After
hypothesizing influences, the case base is used to find prior designs which may embody some
physical law or principle that matches the hypothesized influence. With this approach one often
retrieves cases from outside the current design domain that are analogically related to the current
design problem. It is for this reason that CADET's solutions are innovative 6 . The approach is
able to solve design problems by drawing analogies to prior designs and by exploiting physical

6For a definition of innovation refer [44]
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laws and effects other than those included in the given domain description.

Consider the design of a device which controls the flow of water into a flush tank. The initial
configuration is shown in Figure 2-6: a pipe is delivering some water to a tank which fills over
time. The behavior of the device to be designed can be specified as follows: as the depth of

water (D) in the tank increases, the rate offlow of water into the tank (Q) should decrease. The

influence is given by Q &- D. This influence may be used as an index to retrieve cases with.
If a matching case is not found, then one would have to consider using a combination of cases
which are behaviorally equivalent to the specified behavior. Assume also that no relevant

domain principles have been identified a priori.

o

."Influence

Figure 2-6: Initial Configuration before Design begins.

Two serial transformations (by design rule 1) of the influence, Q +-:-- D yields the following
three sets of influences:

1. Q +---- Var2 - Varl -1-- D
2. Q E-± Var2 Varl D
3. QEL.. Var2-•2_- Varl -D

Consider the second set of influences. The influence Var2 *--- Varl can be matched to the
see-saw influence X2 --:--- X which binds the two unknown variables. The influence
Q +-I-- X2 matches the tap (Figure 2-1). The remaining influence X1 • D matches a float

(Figure 2-7).

The resulting design is shown in Figure 2-8. The figure has two parts: a synthesis strategy and
the actual synthesized design. Currently, CADET only generates a synthesis strategy. It outputs
a list of cases or case pieces with information on how they should be connected. We are
currently addressing issues in physical synthesis such as, adaptation of case pieces, recognition
and resolution of physical interactions, and the management of undesirable side-effects. For
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Fot"

Figure 2-7: A simple float

example, the see-saw (as retrieved from case memory) may actually be 10 feet long and would
have to be appropriately re-sized to suit the flush tank design. Further, the position of the
fulcrum has to be moved to match the vertical distances moved by the float and the tap's
plunger.

Seesaw
X2 X1

.... Tag Float /

~ Tap

D, 0

Synthesis strategy Synthesized design

Figure 2-8: A flush tank

Let's look at another possible design configuration for this example. The third set of influences:
Q <-- Var2 4-:-- Varl 4-- D can generate alternative design configurations. The first

influence Varl <-- D, says that as the water level increases, some quantity Varl decreases. An

ultrasonic distance measuring device, held over the water surface, could provide this behavior.
The output of this device is an electrical signal. Let's call it Sig and bind it to Varl. The
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influence Q +-±- Var2 matches a basic tap by binding Var2 to X (which is a linear movement).
Finally, we are left with the influence X • Sig which says that when an electrical signal
increases a body moves linearly in the X direction. A positioning device with a linear ratchet and
motor can provide this function. The resulting design is shown in Figure 2-9.

Positioning device Positioning device Ultrasonic

sensor

a Tap X Sig I ~1

Tap

Synthesis strategy Synthesized design

Figure 2-9: A flush tank: exploiting extra-domain principles

Through the process of influence hypothesis and matching, the system is able to use physical
laws and principles embedded in prior design cases to achieve its current goals. In this way,
CADET is opportunistic about the principles it exploits in a design. This is unlike other
approaches which assume that all the relevant principles have been identified a priori [79].
Because CADET hypothesizes influences, it does not limit itself to the given knowledge.
Consequently, it can generate elaborations that represent designs that have never been conceived
of before.

2.7 Case Matching
Issues relating to matching indices to case attributes has been an important part of CBR research
[26, 51]. These efforts have concentrated on retrieving cases using indices that match specific

attributes about cases. In CADET, the case matching problem includes matching graphs of
influences.

Behavior matching is done in severals ways:
1. Exact Match. The quantities (nodes) and influences (arcs) match exactly.

2. Abstract Match. Nodes are matched using object and concept hierarchies. For
example, the translatory-signal X will match a rotational-signal L2 as they both are
physical-signals.

3. Structure Matching with Variable Binding. When CADET hypothesizes
variables and influences, they have to be matched against cases to find appropriate
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bindings for the unknown variables. The system looks for common sub-graphs in
the case and the index. In this way it is able to find relevant sub-behaviors
embedded in the cases.

Consider the flush tank example. The elaborated index
Q +-2_ Var2 *-:- Varl < D could be matched against the faucet to extract
the see-saw and tap assembly. The match, shown in Figure 2-10, shows the
recognition of common "sub-behaviors" between an elaboration and a design case.

Index

Match

rap Seesaw

QcE--c-- • X2 s.t---St1----_St

OM • OhCaseS÷ Xl •Sf

Figure 2-10: Matching "sub-behaviors"

The match involves the binding the Varl and Var2, and is done at different levels
(see below). The nodes Q and Qc match because they are both liquid-flow-rates.

4. Matching at different levels of detail. We have to be able to match cases which
may not be at the same level of abstraction as the index.

For example, the inde, Q1 +-1_- X1 will match the tap case which has the
following behavior: Q +.-L_ X. Both index and case are at the same level of detail
and the matching is straightforward. If, however, the tap case was represented at a
more detailed level: Q *ý-- Orifice-size -t X , then the given index
QI +--t- X1 will not match. We don't have a good solution to this problem. In
CADET this problem is solved by waiting for the next elaboration of the index. If
the index is elaborated by the first hypothesizing design rule, it becomes:
QI +-L- Varl * Xl. This elaborated index will match the case.

2.8 Constraint Checking
The search for elaborations is controlled by checking for constraint violations. We have
identified two types of constraints: positive and negative. Positive constraints are those that
should necessarily hold good in the final design. These constraints are typically included in the
goal statement. Negative constraints are those influences which should not exist in the final
design. This is denoted by: A -o---B. There are two ways of checking for the non-existence of
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an influence: (1) No direct influence, and (2) No total influence.

No direct influence. Some quantity B is said to not influence quantity A if, after exhaustively
applying the two analysis rules, there is no direct or indirect direct path of influences from B to
A.

No total influence. This is a more subtle concept. In design, it is sometimes possible to make
one quantity have no apparent influence on another by making positive and negative influences
cancel each other. For example, if there are two paths of opposite signs from B to A, then by
proportionately adjusting the influences, (depending on quantitative magnitudes), it may be
possible to make B's total influence on A be zero. Appendix A (extended design example)
illustrates the use of this type of constraint checking.

2.9 Concluding Remarks
Problem solving in the domain of Engineering Design imposes a set of requirements on a
problem solver: (a) the representation needs to capture and integrate several levels of abstraction
from the linguistic to the physical, incorporating linguistic specifications, laws of physics, and
constraints, (b) the problem solver should be able to reason both symbolically and analytically at
different problem solving stages and integrate the process and results of its reasoning, (c)
verification techniques should be incorporated in the problem solving.

We have presented an approach to the conceptual design of hydro-mechanical systems using a
case base of previous designs that realize subfunctions of the desired artifact. The process
consists of applying behavior-preserving transformations, based on a qualitative calculus, to an
abstract description of the desired behavior of the device until a description is found that closely
corresponds to some collection of relevant cases. The major benefits of the approach are: (a) it
allows for retrieval of relevant cases without imposing a predetermined decomposition of the
design, (b) it is a generative approach that utilizes knowledge of domain laws, design principles,
such as simplicity, and behavioral constraints to reason from design goals to possible solution
structures, (c) it can identify "missing" cases, necessary for completion of the design, and (d) the
resulting transformations are guaranteed to be behaviorally equivalent to the original
specification.
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APPENDIX A. Conceptual
Design Example

In this appendix, we will examine an example that illustrates the workings of the CADET
system. The example is about the design of a hot/cold water faucet. The function of the faucet is
described as:

A device which mixes hot water at temperature Th and cold water at temperature Tc with flow
rates Qh and Qc respectively and allows the control of the mixed water temperature Tm by a
mechanical signal St and its flow rate Qm and by a mechanical signal Sf. In addition, the two
controls should be independent: St should not influence Qm and Sf should not influence Tm.

This specificution is input to CADET as goals, constraints and a qualitative description of the
governing physical laws and principles. The program then starts case matching and elaboration.
It stops when it finds the first set of cases or case pieces that fully match an elaboration. It finally
draws the synthesis strategy diagram on a graphics window. If the user is not satisfied with the
design, he/she may edit the specification file, add new constraints and restart the system.

Goals.

The goals can be represented using influences such as:

aT

aQ[--2- •= [+1
[P]= [÷]
aSf

Here we have interpreted "control" as the influence value [+]. This is only a convention. The
influence value could also have been [-]. This does not affect our reasoning procedure since St
and Sf are unknowns.

Constraints.

For the faucet, the behavior specification says that the signal St should not influence Qm and the
signal Sf should not affect Tm. We may try to represent these as positive constraints as:

aT ~ DQM[-1 = [0], [-] = [0]
aSf ast

However, this formulation implicitly assume here that Tm depends on Sf. This need not be true
at all since, Tm might be totally independent of Sf . To avoid this ambiguity, we make use of
negative constraints. For CADET the above constraints are input as:
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D- T aT

as1  asf
-aQ-M aQm

. I [+], # -

[at [as1

During constraint checking, if any of these influences occur as effects of the device behavior, the
alternative is discarded.

Process description.

The physical laws and principles governing the process are also input to CADET. For the faucet
the process controlled by the device is the mixture of fluid flow. The behavior of the mixture
can be described in terms of the following two equations:

QmTm = QhTh + QeTc Conservation of Energy
Qm = Qc + Qh Conservation of Mass
where: Th > Tc

The following set of influences describing the process are derived from the above principles:

aT aT aT aT aQ aQ
aTc aTh aQh aQh DQC aQh

2.9.1 The Design Process
CADET first tries to retrieve cases which match the given specifications. If it cannot find a
matching case, it starts elaborating the given goal. CADET first applies the serial operator
(inverse application of the function of function rule). The following eight alternatives are
generated 7:

1. (Tc St +) (Qc Sf +)
2. (Tc St +) (Qh Sf +)
3. (Qc St -) (Qc Sf +)
4. (Qe St ") (Qh Sf+)
5. (Th St 4") (-Qe Sf +)

6. (Th St +) (Qh Sf +)
7. (Qh St +) (Qc Sf +)
8. (Qh St +) (Qh Sf +)

These alternatives are combinations of the influences of the two input signals. They are checked
for constraint satisfaction using the two analysis rules. The idea is to find all the influences
implied by the design alternative and to then look for influences that violate constraints. For

71n CADET the influence [--I = [+] is represented as the list (Qm Qh+)
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instance, the first alternative is checked as shown in Figure A- 11. The two clauses of the
alternative are combined with the other known influences to derive new influences. Using the
first analysis rule, the clause (Tc St +) is combined with the known influence (Tm Tc +) to infer
that (Tm St +). As shown in the figure, making such inferences can help find violations.

(TcSt +) (Oc Sf +)

1 (TM Tc -) (Tm Cc-)2 5 (CmQc+)

(Tm St +) (TM Sf-) (m Sf +)

t
This influence occurs in the violation
constraints given in the specifications.
Hence, this design alternative is rejected.

Figure A-1l: Constraint propagation for serial design alternative 1

In this example, the first eight alternatives are all found to violate the given constraints. This
however, does not mean that further elaborations of the alternatives will also fail to satisfy the
constraints. The reason is that these alternatives represent too strong a coupling among device
parameters. Let's see what this means.

If CADET is told to ignore the constraints, then the program accepts the above eight designs and
retrieves the following unique sets of cases:

1. (Water-heater) (Tap)
2. ((Tap)( See-saw)) (Tap)
3. (Water-heater) (Tap)
4. (Tap) (Tap)

Alternatives 1 and 4 are sketched (manually) in Figure A-12 and Figure A-13 respectively. Both
designs violate the independence constraints. The effects of St and Sf are coupled. We have to
decouple them through further elaborations of the index.

CADET continues by applying the second design rule. It generates 28 distinct design
alternatives. Some of them are:

1. (Tc St +) (Qc Sf +) (Qc St -) (Qc Sf +)
2. (To St +) (Qc Sf +) (Qc st -) (Qh Sf +)
3. (Qh St +) (Qh Sf +) (Th St +) (Qc Sf +)
4. (Qc St -) (Qh Sf +) (Qh St +) (Qc Sf +)
5. (Tc St +) (Qc Sf +) (Tc St +) (Qh Sf +)
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1Sf
Oh.Th 0 Is OQc" Tc

Qm.Tm Water heater

Figure A-12: Potential final design for serial design alternative 1.

Qh.Th Qc.Tc-U I

Om.Tm

Figure A-13: Potential final design for serial design alternative 4.

The first three are rejected based on constraint checking as done before. The fourth alternative
produces the following influences as the end result of exhaustive influence propagation which
has to be done for constraint checking. ( Figure A-14 ):

(Qm St -) (Tm St +)(Qm Sf +) (Tm Sf +) (Qm St +) (Tm St +) (Qm Sf +) (Tm Sf -)

In this influence graph, St influences Tm positively on the whole but influences Qm both
negatively and positively. By applying the total influence property we see that St will not
influence Qm if the quantitative increase and decrease are equal. The interpretation is that the
design could potentially satisfy the constraints. Similarly, we find that Sf will influence Qm
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Figure A-14: Constraint Propagation for a parallel design alternative

(Qc St-) (cc Sf+) (Oh St +) (Qh Sf+)

(TmSt+) (OmSt-)(TmSf-) (Cm Sf+) (TmrSt+) (QmSt+) (TmSf-) (am Sf +)

(TM St 4-) (Om St 0) (Tm Sf 0) (Ore Sf+)



31

positively, can be made to not influence Tm (total influence). The potential design, based on the
cases retrieved for this is given in Figure A-15.

1St

Oh Oc
Th EF rTc

am iTm

Figure A-15: Potential final design for parallel design alternative 4.

Another feasible parallel design alternative generated by CADET is: (Tc St +) (Qc Sf +) (Tc St
+) (Qh Sf +). and the potential final design for this alternative is:

Ifs

Th UOc
Qh TC

U S t

Om 1Trm Water heater

Figure A-16: Potential final design for parallel design alternative 5.

I II I II ll1 1 1---------I
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APPENDIX B. Proof of the
Analysis
Theorems

Proofs of the two rules are based on an assumption of continuity [61 and differentiability.

1. The Function of Function rule. Let [u] =f([x], [yD]), where [x] and [y] are independent
variables with respect to [u]. Let [z]= g([u],[v]) be another qualitative function. Then,

Paz] =J[z] a[u]
a[x] a[u] a[x]

Proof:- Let Ix] and [y] change by A[x] and A[y].Let the corresponding increments in [u] and [z]
be A[u] and A[z] respectively. Then, we can write (assuming continuity and differentiability)

A[z] A[z] A[u]
A[x] A[u] A[x]

When Afx] -- [0], then, since A[u] -+ [0] as A[x] --- [0], we have,

a[z] lim A[z] .li A[u]
a8x] -g[-J-,t0 AM[u] Atxj-+[01 A[X]

or,

a[z] = .[z] a[u] Q.E.D.
a[x] a[u] a[xl

The notion of independence among variables in the system is crucial for the valid application of
the function of function theorem. Following, are some useful definitions of dependence and
independence of variables:

1. A variable y is said to be relatively dependent on another variable x if its value is a
function of x.In such a context [x] is said to be relatively independent of [y].

2. A variable is defined as an absolute independent variable if this variable is not
relatively dependent on (or not influenced by) any other variable in the system.
From a design point of view, we can say all input variables are absolute
independent variables.

3. A variable is defined as an absolute dependent variable if no other variable in the
system is relatively dependent on this variable. All output variables possess
absolute dependence.

4. A variable that is neither an absolute independent variable nor an absolute
dependent variable is an intermediate variable.An intermediate variable can be
either a relative dependent variable or a relative independent variable depending on
the context.

5. The function of function theorem requires only relative dependence and
independence.
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Interestingly, the same problem occurs in numerical calculus. Consider the following algebraic
equation: y = 3 x + 4 z where ay/ax = 3, and ay/oz = 4, from which we can calculate for
l(z)/a(x) as a(z)la(y) x a(y)l/(x) = 1/4 x 3 = 3/4. But, from the original equation we can write:
z = y/4 - 3U4 from which we get az/ax = - 3/4, which contradicts what was just
calculated. The fallacy is that, while using the function of function rule we violated the
necessary conditions that z is not a dependent variable with respect to x. When we calculated
ay/lx = 3, we assumed that az/lx --0, but later derived a relation between z and x leading to a
contradiction.

2. The total differential Theorem. Let [u] = f([x],(y]) be a continuous qualitative function.
Then the total differential

A[u] am x A[x] + am x Afy]

a[x] aty]
The total differential gives the net increment in the dependent variable as the independent
variables are changed.

Proof:- The total increment in [u] can be written as

A(u] = ft[x]+A(x],[y]+A[y]) - fl[x],jyI)
=>A[u] = f([x]+A[x],[y]+A[y]) - Al[xI,(y]+A(y]) + J([x],[y]+A[y]) - ft[x],[y])

which can be written as :

A~u] = .(f[x]+A[x],[y]+AIy])-f([x],[y]+AbY]) . 1x] +f([x],[,]+A[y])-f[x],[y]).A[x] +Ay]

Now as A[x] and A'y] -+ [0], we have in the limit

d[u] = ._..] d[x] + a[u... d[y] Q.E.D
a[x] a[y]
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Chapter 3

The CADET system

CADET's approach to design has three main characteristics, (a) transformation of high level
functional specifications to a set of alternative structural descriptions that satisfy the given
specifications, (1) adaptation of retrieved previous designs and design pieces to fit specifications
and constraints in the current design problem, and (c) synthesis of the most promising
alternative(s) from components whose combined behavior is equivalent to the overall device
specifications. The input to CADET is the set of design specifications and its output is a
conceptual schematic that meets the given specifications. The input design specifications consist
of functional and behavioral descriptions and physical constraints. Functional specifications
describe the interactions of the device with its environment (e.g., its use). Behavioral
specifications describe the behavior enabled by the structural configuration of the device. For
example, the functional specification of a clock is to "tell time", whereas its behavior is the
movement of its hands on the dial caused by the movement of the gears (the structural parts)
inside the clock. Physical constraints describe constraints on the physically realizable structural
description of the device. In particular, the functional description in CADET consists of
functional goals, functional constraints, and a functional process description. The behavioral
description consists of behavioral goals, behavioral constraints and a behavioral process
description. The functional goal of a clock is "to tell time", a functional constraint could be
"usable by a blind person", a functional process description could be "the telling of time is
through touch or sound". A behavioral goal for a clock could be "find a mapping of a day to
some finite- numbered set of symbols and exhibit the mapping with an indication of the
correspondence of current time to one of the symbols", a behavioral constraint could be "find the
minimum number of needed symbols", and a behavioral process description could be "the
indication of the correspondence of current time to one of the symbol should be periodic".

CADET has access to a case memory and engineering domain laws and principles. Each case is
represented in terms of a multi-layered representation expressing function, behavior and
structure of the desired device and relations among them. The representational abstractions that
are used for indexing the case memory are: (1) Linguistic descriptions, (2) Functional Block
Diagramming, (3) Qualitative influence graphs, (4) Qualitative States (5) Structural features
(including device topology, material, weight and dimensions), and (6) Performance features
(including cost, reliability, availability, device output values under different conditions).
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CADET's case based design process consists of the following steps that are iteratively applied as
new subgoals are generated during problem solving [68]. Though we present these steps
sequentially, they may be interleaved during problem solving.

1. Development of a Functional Description. At the simplest level, the desired artifact
can be viewed as a black-box which takes certain inputs and produces desired
outputs. The function of the black-box is described by qualitative relations
explaining how the inputs and outputs are related. The system's job is to produce
the structural description of a physically realizable artifact which will convert the
inputs into the desired outputs.

2. Retrieval of Cases. A set of design cases (or case parts) bearing similarity to a
given collection of features are accessed and retrieved. Retrieval is performed
using not only the existing features of the input specification, but also indices
arising from index transformation strategies.

3. Case Adaptation to fit specifications. Retrieved cases and case pieces must be
compared to input specifications, so that deviations from desired specifications can
be identified and appropriate adaptations can be generated.

4. Development of a Synthesis Strategy. A synthesis strategy is a description of how
the various cases and case pieces will fit together to yield a design that meets the
given specifications.

5. Physical Synthesis. Realization of the synthesis strategy at a physical level. This
is a difficult problem since undesirable side effects among case parts may occur.

6. Verification. Adverse interactions could lead to non-conformance of the design to
the desired specifications. This is verified through quantitative and qualitative
simulation. If the simulation is correct, and if all the constraints are satisfied, then
the design is successful. If not, repair (next step) is attempted.

7. Debugging. Debugging involves the process of asking relevant questions based on
a causal explanation of the bug. These questions serve as cues into memory to
retrieve cases about bugs and their repairs.

The current implementation of CADET, discussed in this paper, covers the first five steps
indicated above. Verification and debugging is currently left to the human designer. Our
system's usefulness lies in it's ability to access a large database of prior designs and find relevant
components and alternative configurations. CADET is aimed at being a designer's
brainstorming assistant, not his replacement.

3.10 CADET System Architecture
CADET's architecture is centered around a Design Blackboard (Figure 3-17. The blackboard is
used to maintain information about the various design alternatives that are being actively
considered at any given time. Our choice of a blackboard architecture was motivated by several
considerations. First, the blackboard provides continuous visibility of the current status of the
design, so it is easier for the user to make informed interactive decisions. Second, the blackboard
supports communication and cooperation among the various subsystems (e.g., case base,
materials module, constraint checking module). Third, the blackboard provides control
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mechanisms, such as posting of events and checking of dependencies that are helpful in detecting
conflicts and guiding the evolution of the design in the right direction. Fourth, since design is in
general an underspecified task, the blackboard provides flexible means for asserting the
dynamically arising new goals and constraints, thus allowing the relevant design modules to be
promptly informed and engage in appropriate problem solving.

Constraitvs Viol4a ins

"The"specificaterions areinputto CDTaafie.. that stte the d ir Elaboralion c

an pyscalws Te oas retratdAs in OADicsbteCs Mathn odule. hsmdl
firs use a rlatonaldataasetoquicklychind all casesthtmchhegvnidxIfheesn

ug erall v g s Domain Models

cm ntab ehavchios s

aeMuld-I'ndexed [

Figure 3-17: System Architecture

The specifications are input to CADET as a file that states the desired goal behavior, constraints,
and physical laws. The goals are treated as indices by the Case Matching module. This module

first uses a relational database to quickly find all cases that match the given index. If the design

case a does not contain designs of artifacts with the same or similar function to the input case,

using the given overall behavioral goal specification as an index will not retrieve any cases.

Moreover, since there is no one-to-one correspondence between physically realizable device

components and desired device sub-behaviors, sub-behavior matching of pre-detehained

components may not yield relevant retrievals. This problem is approached in CADET through

behavior-preserving transformation techniques that transform an abstract description of the
desired behavior of the device into a description that can be used to find relevant designs in

memory [46].

The transformation is done in two ways: (a) If it is known what physical laws and principles are
going to govern the solution, then the given goal is transformed by relying on the laws to achieve
certain sub-behaviors. (b) If, however, the relevant laws are not known a priori, sub-behaviors
are hypothesized and the case memory is searched to find ways in which the required behavior
may be achieved. This is in contrast to other approaches that assume a priori knowledge of the
domain laws and models that will be part of the solution [79]. If CADET cannot complete a

design because it is not given the relevant physical laws, it hypothesizes behaviors and looks for
cases which embody the relevant laws. Our approach has the following advantages: (1) the
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system at each point in the search is aware of what behavior it is trying to achieve, (2) because
cases embody design optimizations, the accessed components correspond to already optimized
physical structures, (3) solutions may involve use of principles outside the given domain, that
have been successful in a prior design, (4) the problem solver does not have to re-solve problem
from scratch. A more detailed presentation of index transformation is given in section 5.

The result of index transformation is an index graph whose nodes are design variables and whose
arcs are qualitative relations. Subgraphs of the index influence graph describe component sub-
behaviors. Indices are used, not a set of features, but as an index graph with an associated
topology. This makes case matching and retrieval a challenging task. The index graph is
decomposed into separate influences. For a given index graph, all cases that match each
influence are retrieved. If an influence does not retrieve any cases, a relaxed match is attempted.
The relaxed matching process utilizes conceptual hierarchies of design parameters that allow
decisions of parameter closeness. For example, a vertical signal is a relaxation of a horizontal
signal because they are both mechanical signals. Finally, cases or snippets are selected based on
criteria such as overall device cost, weight and a synthesis measure. The synthesis measure of a
component case or snippet is the ease with which the snippet can be synthesized with the rest of
the selected snippets in order to form a working overall device that meets the input
specifications. Based on the selection criteria, the pareto optimal set is returned to the design
blackboard. Section 6 presents a more detailed discussion of the matching module.

Using the index graph, CADET retrieves alternative sets of cases (and case pieces) whose
synthesis gives behavior that is equivalent to the overall behavioral input specification. Design
critics, such as the synthesis module and the materials module, monitor the evolving design on
the blackboard. If problems are detected, then the retrieved cases must be adapted. Adaptations
can range from simple parametric modifications, such as re-sizing, to those requiring
sophisticated knowledge and reasoning, such as adaptation of the material of device parts. The
focus of the current implementation in terms of adaptation is a materials specialist that provides
material adaptation advice. The materials specialist is quite sophisticated inccrporating expert
material knowledge from the Ashby charts [1] and employs fuzzy reasoning. A more detailed
presentation of materials adaptation is given in section 7.

3.11 CADET'S Transformational Approach
Most existing case-based systems use a pre-defined set of indices to access cases in memory.
This indexing strategy is limiting, since salient features of the current case that could constitute
good indices may not directly match the pre-defined index set. In design, the cases have
associated descriptions in terms of both behavioral and structural characteristics. If parts of the
behavioral specifications of the desired design correspond to the behavioral indices of the
components, then the components (and hence their structural description) can be directly
accessed. However, since there is no one-to-one correspondence between the desired behavior
of a device and the individual component behaviors, it is often not possible to find relevant cases
by using either the given overall behavioral specification as an index into case memory, or a
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pre-determined set of component indices. This gives rise to the need for a technique that can
recognize underlying behavioral similarities. Our approach to this problem is based on using a
combination of: (1) the behavior-preserving transformation techniques that convert an abstract
description of the desired behavior of the device into a description that facilitates a similarity
recognition and subsequent retrieval of relevant components, (2) matching and extracting of
relevant snippets of designs in the case-base.

For example, consider the design of a device which controls the flow of water into a flush tank.
The continuous part of the behavior can be specified as follows: as the depth of water (D) in the
tank increases, the rate of flow of water into the tank (Q) should decrease. This specification
may be used as a set of indices to find relevant cases in memory. If there are no cases that
directly match the specifications, then it would be useful to consider using parts of several cases.
In this instance, an analogically relevant case is a hot-cold water faucet shown in Figure 3-18.
The faucet is specified as a device that allows for the independent control of the temperature and
flow rate of water by appropriately mixing the hot and cold water streams. By extracting
portions of the faucet, such as the see-saw part, it is possible to design the flush tank device as
shown in Figure 2-8.

Qho Qcodd

Figure 3-18: A Simple Hot-Cold Water Faucet

The relevance of the faucet case to the design of the flush tank would not have been possible to
recognize because the functional descriptions of the two devices are completely different. On
the surface, the base (faucet) and the target (Flush Tank) are very different. The relationship is
subtle and hidden. The analogy is drawn by recognizing common behavioral patterns underlying
the base and the target. Another complicating factor is that the whole faucet is not relevant to the
target problem. The relevant faucet parts have to be recognized and extracted.

The design process that achieves this kind of reasoning has two parts: similarity recognition and
sub-behavior matching. First, the goal specification is elaborated by applying transformation
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Figure 3-19: A flush tank

operators. This process, in essence, generates several alternative behavior descriptions that are
equivalent to the original goal. These alternatives are then matched against the cases in memory.
The matching process tries to find entire cases or parts of cases that share common "sub-
behaviors" with the elaborated goal. Index transformation is a way to change the given salient
features of the current cases in ways to match the indices under which previous cases have been
stored, thus making accessible to the problem solver previously inaccessible cases.

The transformations do not impose any a priori structure or topology on the physical realization
of the design. The decompositions are collections of sub-behaviors with information on how the
sub-behaviors must interact to produce the overall device behavior. In effect, the program is
insensitive to the form of the given behavior specification. Even if a given behavior

specification is not compatible with the representation of the cases in memory the program is
able to apply transformations to find behavior equivalence between the specification and relevant
design cases in memory.

The transformation technique described here is applicable to any domain in which behavior can
be modeled as a graph of influences. An influence is a qualitative differential (partial or total)
relation between two variables one of which is a dependent variable and the other an
independent variable. The notion of influences is based on the notion of confluences [6] and
causality [241 in device behavior. Influences are organized as graphs. In general, an influence
graph is a directed graph whose nodes represent the variables of concern and whose arcs are
qualitative values depicting the influence of one variable on another. These graphs of influences
are used in CADET to represent the behavior of devices, where each influence corresponds to
some physical law or principle.

Consider, for example, a household water tap that has two inputs: a water source and a signal to
regulate the rate of flow of water. In the two and a half dimensional representation [741 that we
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have adopted, the tap is represented as a pipe with a gate as shown in Figure 2-1. The flow rate
is given by Q and the position of the gate is given by X. The position of the gate controls the
flow rate. This behavior is represented as an influence Q +-_t- X, which is read as follows: "The
flow rate (Q) increases (+) monotonically with an increase in the signal (X)". This influence
represents the "tap" principle.

XT Orifice

Q_9 +, x

Influences

Figure 3-20: A simplified water tap

At a more detailed level, the influences correspond to standard physical laws and effects [21].
The tap's detailed behavior, as shown below, is composed of the following influences: (1) As the
gate is opened, its position (X) influences the Orifice size and, (2) the total flow of water (Q) is
influenced by the Orifice size and the Pressure difference. The first influence is based on rigid-
body motion and follows from the definition of an orifice. The second set of influences are
based on Bernoulli's theorem.
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The transformation technique in CADET is based on two qualitative rules involving influences.

Design Rule 1. If the goal is to have x influence z, and if it is known a priori that u influences z,
then the goal could be achieved by making x influence u.

Design Rule 2. If the goal is to have x influence z and if it is known a priori that some two
quantities p and q influence z then, the goal could be achieved by making x influence p or q, or
both.

The two design rules transform a given influence into a more detailed set of influences which are
behaviorally equivalent to the original influence. As transformation operators, the first rule
yields a serial transformation and the second one yields parallel transformations. The next
section presents an example of how transformation integrates with case retrieval.

3.12 Matching and Retrieval of Cases and Snippets
The matching module in CADET takes an elaborated influence and uses it as an index to find
relevant cases in memory. The module tries to find devices or parts of devices, whose influence
graphs or subgraphs match the index influence-graph. The retrieved components are then
synthesized to form a device which satisfies the specifications.

For example, assume we want to design a device that takes a high pressure signal and outputs a
rotational motion. The index influence graph is given by rotation +-I pressure. Assume that
the system is unable to find cases that match this index. Th next step is to elaborate the index in
order to facilitate case retrieval. One possible elaboration is: rotation i_2._ X +-±-_ pressure,
where X is an unknown variable. The value for X is found by searching the casebase. The
matching algorithm takes these two influences in the elaboration, and starts by looking for all the
cases that match the first influence: X <--t- pressure. The system finds all the cases where
pressure, affects some unknown. Let's suppose that the system finds a tank with a pipe
(waterflow +-:t pressure) and a pressure cooker (boilingtemperature - pressure). These
cases represent two possible matchings for the first influence. The system then proceeds to the
second influence. For the tank, the unknown variable X is bound to the water-flow, and so, the
second influence becomes: rotation +-±- water-flow. This influence retrieves a water wheel
from the casebase. The pressure causes the water to flow, and the water causes the water wheel
to turn, producing a rotation as output (figure 3-21). On the other branch of the search, the
system fails to find a case that produces rotation from a change in boiling temperature. In this
way, the matching subsystem takes a given graph of influences and finds cases that match the
index.

Matching subgraphs of an index with graphs and subgraphs of cases in the casebase, is a variant
of the subgraph isomorphism problem. We approach the problem by separating the graphs into
individual influences. Each influence is of the type: (A influences B positively/negatively).
Influences of each case are indexed separately in a relational database. For a given index graph
of influences, the system finds all cases that match each influence.
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Figure 3-21: A Turbine

Paranear

Mechanical HducElectrical
PanuamorPeantr Paranster

Tranu~avy P41 Flow Pressure s

Vertical Hoqizontal Won water Positive Vacuum
Transl"in Translation mow Pressure

Figure 3-22: The Parameter Hierarchy

If an index influence has an unknown variable, then the system will find all possible bindings for
that variable. Each possible binding is treated as a new alternative. Each binding is propagated
to the remaining influences in the index. If there are still some unknowns left in the index, all
possible bindings of those variables are also treated as new alternatives. The subgraph search
grows as a tree, wherein, at each level we have one or more alternatives to choose from. To
control the search, the A* algorithm is used to select the most promising paths. In CADET we
use several criteria to guide this search: total cost, weight, and a synthesis measure. The
synthesis measure of a component or a device is the ease with which the component or device
can be synthesized with a given set of components to form a working device. The measure helps
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prune away awkward designs that are difficult to adapt. The synthesis measure is based on the
following factors:

"* It has been observed that selecting components of the same device type for as many
index influences as possible results in a more easily synthesizable solution. If we
select a device or a component of the same device type as it's parents it can be easily
assembled with the other components. Hence a component which is of same device
type as it's parent is given higher priority. For example, water flow is consequently
closer to pressure than to a rotating motion.

" The distance between the influence parameters is another part of the synthesis
measure. The distance between any two parameters is measured as the number of
levels one has to go upwards in order to find the parent node that is common to both
parameters. This factor has a major contribution to the synthesis measure. Consider
the following index influence graph:

rotational-signal +-±- unknown-sigl *---- translatory-signal

Assume, that the first influence has two matching cases in the case-base:

(a) flow-signal <-- translatory-signal (case: simple slider tap)

(b) rotational-signal +-±- translatory-signal (case: rack & pinion)

Depending on the choice for the first influence we have the following alternatives
for the second influence:

(c) rotational-signal - flow-signal (case: water wheel)

(d) rotational-signal +-±-- rotational-signal (case: gear pair)

The second alternative is easier to synthesize because, both the gear and the rack &
pinion are mechanical devices. The other option (tap and water wheel) that involves
mechanical and hydraulic action, is harder to synthesize.

The case retrieval algorithm is as follows:

1. Create two empty lists: LIST and RESULTS.

2. Read the given index influence-graph. Put it in LIST.

3. If LIST is empty, then return the RESULTS and STOP.

4. Remove the first graph in LIST. Call it GRAPH.

5. If all influences have been previously marked as "matched"

Then put GRAPH in the list called RESULTS. Go to Step 3.

Else, Select (don't remove) the first unmatched influence in GRAPH. Call it
INDEX.

6. Search the database for all influences that match INDEX. For each match, also
retrieve the corresponding case name.
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If INDEX has no unknowns, associate the names of all the matched cases with
INDEX. Mark INDEX as "matched". Add the GRAPH back to LIST. Go to Step
6.

If the influence has an unknown variable, find all influences in the casebase that
match the known part of the influence. Call these influences MATCHINGS.

a. For each influence (X) in MATCHINGS, create a copy of GRAPH,
replacing INDEX by X. In each copy of GRAPH, replace all occurrences of
the unknown variable in INDEX, by the corresponding variable in X.

b. Mark each X to indicate that it has already been matched. Also, associate
with each X the names of all the cases that contain the influence.

c. Add the copies of GRAPH to LIST.

. the LIST, based on pareto optimal satisfaction of all the given criteria (e.g.
reliability, and materials). This step is optional.

8. Go to Step 3.

Each graph in RESULT is finally checked for synthesis complexity. Case alternatives for each
influence are treated as graph colors. A clique partitioning algorithm is run on each graph to find
the cases that will be the best to synthesize.

3.13 Material Adaptation
Adaptation is an important process in design for several reasons. First, since the specifications
of the current problem do not often exactly coincide with the specifications of previous
problems, adaptation is necessary to fit retrieved relevant cases to the current specifications. This
reason for adaptation is the one most commonly found in CBR systems. Second, design is an
underspecified task where goals and constraints are dynamically generated during the design
process. Generation of new goals and constraints is the result of (1) the case based reasoning
process itself, where the new goals or constraints are present in retrieved cases, and/ot (2)
creativity on the part of the designer. Adaptation is necessary to incorporate the new goals and
constraints into the evolving design (12, 20]. Third, since new designs are synthesized from
component parts, interactions arise during the synthesis process. These interactions often result
in side effects that alter the device desired behavior. Hence, adaptation is necessary to take care
of the side effects.

The current focus in CADET is adaptation due to new goals, constraints and side effects that
concern materials considerations. Material adaptation involves re-evaluating the reasons why a
particular material was used in a precedent case and whether the same or new criteria (goals and
constraints) are relevant in the current problem. Once the new criteria have been established,
appropriate materials are selected and substituted. For example, if a household oven were being
adapted for an aerospace application, the designer would have to re-evaluate the material choices
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in terms of weight minimization. This evaluation could result in replacing heavy steel
components by ceramic-coated aluminum ones.

Adaptation of a component of a retrieved precedent from the point of view of materials, may
take the following forms: (1) increase or decrease in the loading level (e.g., higher loads may
require a stronger material), (2) change in mode of loading (e.g., torsion instead of bending
alone), (3) addition or removal of constraints (e.g., the material of pipes used for drinking water
should be non-toxic), and (4) goal changes (e.g., weight considerations become very important in

aerospace applications).

We will now examine the material selection and substitution subsystem in CADET. The ideas

are presented through an illustrative example. In our example, we will see how a base case (a
see-saw) is re-used in a target problem (a faucet). Material justifications in the base are modified
to suit the target context. This leads to the selection of new materials.

3.13.1 Case Representation
Consider the simple see-saw shown in Figure 3-23. The see-saw's main component is a beam,

hinged at its center. Material selection for the beam is based on a variety of criteria: as it is
intended for children it should not be too heavy; as it is intended for outdoor use it should be
water resistant; it should not rust; should not cost too much; and it's color should not fade in the

sunlight.

Figure 3-23: See-saw on a playground

The see-saw case is represented in the database as a frame. The material justifications are

provided in terms of physical properties.
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See-saw
Location: playground
Material: wood-parallel-to-grain

INHERITED SPECIFICATIONS
Mode of loading: bending of rods and tubes
Normal load: support a weight of 100 kg

BEHAVIORAL JUSTIFICATIONS
Bending resistance: high (or better)
reason: mechanical "to avoid bending under normal load

Torsion resistance: medium (or better)
reason: mechanical "to avoid torsional failure"

Fracture resistance: high (or better)
reason: mechanical-safety "to avoid sudden failure"

FUNCTIONAL JUSTIFICATIONS
UV radiation resistance: at least good
reason: aesthetic "to avoid color fading in sunlight"

Temperature of use: very cold TO very hot
reason: safety "avoid skin contact

problems at extreme temperatures"

There are two types of justifications used in the system: behavioral and functional. A reason is
attached to each justification. A degree of importance can also be added to the justifications that
would convey the extent to which the justification must be taken into account in determining the
right material class. For instance, one may consider aesthetic reasons less important and
therefore focus first on satisfying mechanical and safety constraints.

The behavioral justifications constitute the intrinsic reasons that led to the material choice. A
behavioral characteristic of a see-saw found on a playground is to support the weight of two
people sitting at both ends. The mode of loading of this artifact pertains to the mode of loading:
"bending of rods and tubes". The mode of loading determines the relevant mechanical
properties the material should possess. In the see-saw case, bending resistance, torsion resistance
and fracture resistance are the three important properties.

The functional justifications correspond to a particular instance of the artifact. Let us say, we are
talking about an outdoor location for the see saw. If the see-saw is intended to be used in very
cold weather, one would want to avoid metals because of possible skin contact. The other
functional justification relates to an aesthetic point of view. One doesn't want the color of the
see-saw to fade too quickly when exposed to the sun's radiation.
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3.13.2 Material Adaptation Process
Now consider the target application for the see-saw: a water tap. Figure 3-24 depicts a tap using

the see-saw principle. The rotation in the vertical plane regulates the relative quantity of hot and
cold water. The vertical motion of its hinge increases or decreases the combined flow. The tap
represents a target application where the environmental conditions are quite different from that

of the see-saw.

Hot •= Cold

Water Water

Figure 3-24: Tap using the see-saw concept

The process of finding the right material for the water tap involves the following steps:
1. Look up the material and material j!-stifications of the base case.

2. Look up the features of the target artifact.

3. Deduce (possibly new) material properties the base component should possess in
the target context.

4. Infer the values (fuzzy) that these properties should have.

5. Suggest the best materials for substitution.

In the tap example, the mode of loading remains the same, as well as the three important

mechanical properties. However, the forces on the see-saw mechanism is much lower. The
designer recognizes this and inputs the following to the system:
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bending resistance: medium (or better)
torsion resistance: medium (or better)
fracture resistance: low (or better)

Orders of magnitude may be used here rather than actual values. This facility allows designers to
work with incomplete or inexact information about an evolving design concept. These quantities
can easily be represented as fuzzy intervals [7]. We have divided the whole range of possible
values in five categories: very low, low, medium, high and very high.

Functional justifications can also be modified. In the water tap, resistance to ultra-violet
radiation is not required, and temperatures below freezing are unlikely to be encountered.
Therefore, the corresponding justifications attached to the retrieved case can be discarded. In
addition, one may require the artifact to be resistant to salt corrosion if, for instance, we are
dealing with a marine environment. Having modified the criteria retrieved by the system, the
designer can now use the system to find relevant materials. The selection step is done using
special material selection charts that were developed by Prof. Ashby of Cambridge University
[2]. Our program is able to use fuzzy specifications to locate appropriate materials in the charts.

The Ashby charts show the relative and absolute positions of various material classes with
respect to a tradeoff between two different properties. For example the sketch in Figure 3-25
presents the positions of the materials classes A, B, C, D based on their strength and density.

Li
Strength

L

D

Density

Figure 3-25: Sketch of a materials selection chart.
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The oblique line L crosses material classes with the same strength to density tradeoff. The higher
this line on the chart the better the ratio. Looking for materials with a particular combined

property (tradeoff between two properties) is a problem that involves two kinds of imprecision.
First, the material classes plotted on the charts represent the smallest area containing all the
materials of some class. This means that within an envelope there may be some regions that do
not corresponding to any actual material. Secondly, one rarely looks for materials with a precise
value of the combined property but rather for materials within acceptable ranges of values.

This notion is exemplified in Figure 3-25. A designer may look for materials that lie between
two oblique lines L_I and L,_2. The area between L_I and L,_2 is the preferred range of values
for the combined property. The ranges of values next to lines L_1 and L_2 (shown by the shaded

area on Figure 3-25) represent values close to the preferred range. Materials in these areas should
not be totally rejected although they do not pertain to the set of the preferred materials. This

def'nes three conceptually different regions: (1) above the upper shaded area or under the lower

shaded area are the materials one is definitely not interested in, (2) materials between L1 and
L_2 definitely meet the required combined property, and (3) the materials crossed by one of the
shaded areas but outside the interval [LI,L_2] are acceptable to a certain extent (they are not
totally rejected). Actually, in this third region, the closer the material to the stripe [L_,L_2] (the
preferred threshold) the better.

This type of imprecision can easily be handled by making use of fuzzy set theory. This theory
enables the ranking of material classes with respect to their degree of preference, given some
property. For example one could say that material class B meets the requirements more
adequately than material class A and much more than materials class C. Also, the fuzzy set
theory provides a means to aggregate several material rankings relative to different requirements.
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3.14 Conclusion
We have presented a system that aids in the conceptual design of mechanical devices using a
case base of previous designs. The process consists of applying behavior-preserving
transformations to an abstract description of the desired behavior of the device until a description
is found that closely corresponds to some collection of relevant cases.

The approach allows retrieval of analogically related cases from other domains. If CADET does
not find an exact match it relaxes its requirements, looking for close matches. This sometimes
leads to the retrieval of too many relevant cases. This problem is addressed by the use of a multi-
objective A* type algorithm for the selection of cases. The selection is based on criteria that
prefer alternatives that exhibit desig&" simplicity, ease of synthesis, and low cost. As a result of
evaluation of retrieved cases, adaptation with respect to materials is also performed.

Our approach has the following advantages: (1) the system at each point in the search is aware of
what behavior is trying to achieve, (2) because cases embody design optimizations, the
accessed con r- ..ents correspond to already optimized physical structures, (3) solutions may
involve use of principles from outside the given domain that have been successful in a prior
design, (4) the problem solver does not have to re-solve problems from scratch.
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Appendix: A look at the System

In this section, we present a partial trace of the CADET system as it aids the designer in
synthesizing two hydro-mechanical devices.

The first example is the design of a hot-cold water faucet. The behavior of the faucet is
described in terms of qualitative relations. The input file to cadet is shown below:

;; This input file describes the specifications
;; for the design of a household faucet.
;; The input is described as a set of frames.

;;THE TASK:
;; Design a device that mixes hot and cold water,
; and allows for independent control of temperature and flow rat
; of the mix. This will be done by two signals, the temperature
;; control signal and the flow control signal, that
;; are externally input.

;; Setting up the design parameters:
(cschema 'tc ('is-a 'temperature)) ; tc = temp of cold water
(cschema 'th ('is-a 'temperature)) ; th - temp of hot water
(cachema 'tn ('is-a 'temperature)) ; tm = temp of mix
(cachema 'qc ('is-a 'flow)) ; qc w flowrate of cold wat
(cachema 'qh ('is-a 'flow)) ; qh - flowrate of hot wate
(cschema 'In ('is-a 'flow)) ; qm - flowrate of mix
(cachemna st ('is-a ; st - temp control signal

'vertical-displacement))
(cachema 'sf ('is-a ; sf = flowrate control sig

'vertical-displacement))

pp Task Description:
(cschema 'faucet
;p Goals: Temperature-of-mix (Tm) increases with Temp-Signal (St)
pp Flow-of-mix (Qm) increases with Flow-Signal (Sf)
('goals (-(tm St +) (qn of +)))

p Conservation of Mass and Energy
pp For example, (tm qh +) means, as the quantity of the hot water
;; increases, the temperature of the mix (tm) also increases (÷).
('p-laws '((tmn tc +) (tm qc -) (tm th +) (tm qh +)

((VA qc +) (qm qh +)) )

p Constraints are specified as influences that are invalid.
p Flow signal should not influence the temperature of the mix
; Temperature signal should not influence the flow rate
('constraints '((tm sf ÷) (tm sf -) (qm st +) (in St -)))
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('process 'flow-mix) ;; process type
('output '(tiM q))) ;9; outputs of device

The variables that depict temperatures and flowrates are defined in terms of primitive concepts
that CADET knows about. The program maintains an internal hierarchy of the various variable
types. This hierarchy is used for similarity matching.

Screen 1: The synthesis process starts by giving the command: (design 'faucet).
CADET starts by looking for cases that directly match the given behavior description. If cases
are not found, index elaboration begins.
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Screen 2: When the program starts its process of index elaboration and constraint checking, it
displays the elaborations at it goes along. In the elaboration shown below, the temperature signal
St directly influences the temperature of the cold water Tc. The program is suggesting that we
control the temperature of the mix Tm by directly controlling the temperature of the cold water
stream. The flow signal Sf controls the two flow rates Qc and Qh. By varying the flow signal, the
total amount of water going through this device can be controlled.
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Screen 3: After the elaborations are over, the program tries to find relevant cases in the case
memory. As seen below, CADET finds that a water heater will allow a given signal to positively
control the temperature of a water stream.

The primary input signal comes from a human (one of the cases the program has access to). The
temperature control signal is used to control the water heater, and the flow control signal
operates two taps connected by a rigid body. Finally, the hot and cold water flows merge in a
T-pipe.
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Screen 4: CADET has given us a plausible design for a hot-cold water faucet. The design,
however, is not what we intended. We had not intended to use an external source of energy, such
as a water heater. A new set of constraints is now is added to the list of constraints in the input
file. The new constraints are: (th st +) (th st -) (tc st +) (tc st -). This states that the temperature
signal (St) should not influence (either positively or negatively) the temperature of the hot water
(th). The same holds for the cold water stream.

CADET is invoked with the modified constraints to yield the following new elaboration (below).
Note that the temperature and flowrate control signals do not effect the temperatures. The system
has discovered a way of using mixtures of the two streams of water to achieve its goal. Refer
back to the original specification file. There is no hint of performing temperature control by
mixing hot and cold water, and the system does not have any rules either. This discovery is
purely the product of elaboration.
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Screen 5: Once a satisfactory influence graph is found, case retrieval is re-attempted. Using the
elaboration shown in Screen 4, CADET finds a see-saw as a suitable way of controlling
temperature by mixing hot and cold water streams.
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Screen 6: The screen below displays the synthesis strategy that is generated from the new
influence graph (Screen 4). The temperature control signal affects the see-saw device which is
attached to two taps. As the signal is increased the mix of hot and cold water is altered while the
total volume flow remains the same. In this way, the design will allow the user of the faucet to
change the temperature of the mix without changing the total flow rate (Qm). The flow control
signal acts through a rigid body that connects both taps. When the flow signal is increased, both
taps respond by increasing both hot and cold water flow rates.
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Screen 7: After adaptation (See Section 6.4), CADET tries to physically synthesize the cases it
has retrieved. This process is done using a vector matching approach. The attempt shown below
is a failed case, because this arrangement of the snippets will not behave correctly. We are
currently relying on the user to reject wrong configurations.

Screen 8: At the fourth (final) attempt, CADET generates the right vector alignments to produce
a workable design. After the designer accepts a design, the casebase is updated with the new
design. The new case is available for future problem solving.
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3.14.1 A Metal Bending Device
This section shows CADET designing a metal bending device. Of the various devices that
CADET has designed, this example shows how cadet re-uses a faucet device that it had designed
earlier.

As before, the input specification file is typed in manually:

;; Design a device that creates up-and-down
; displacement by elastic-deformation

(cachema 'metal-bender
;; As time increases the deformation is to
;1 increase and decrease. L 0 , -' 0, + }
('goals '((d timel L)))

;; Deformation is proportional to a vertical (y) displacement
('p-laws '((d y-disp +)))

('constraints)
('process 'elastic-deformation)

(,output ,(d)))

(cschema 'd ('is-a 'deformation))

(cachema 'y-disp ('is-a 'vertical-displacement))

(cschema 'timel ('is-a 'time))
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Screen 9: CADET starts with index elaborations. Because there are no given physical-laws, the
program elaborates using unknows. The screendump below shows CADET considering an
elaboration with two unknown quantities. After the program has done a few levels of
elaborations, it makes a call to the casebase manager and finds relevant matches.
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Screen 10: Below, is one of the alternatives that CADET finds. This example is a result of
CADET's serial influence elaborations.

The program is suggesting using a Pascal Cylinder that is driven by a slider crank mechanism.
The crank is attached to a water wheel that is run by water from a water pump. The user rejects
this alternative.
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Screen 11: The following screendump shows a design alternative generated as a result of parallel
elaborations. A Piston Cylinder is used to create a strong upward motion. The cylinder is driven
by a combination of taps that are used to fill and exhaust the cylinder. The user accepts this
design.

The program is suggesting the use of a human input signal to control the inflow and outflow
from the cylinder. The combination of taps and see-saws is taken from the faucet case, that the
system just designed. Every new problem solving process ends with storing the current case into
memory.
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Screen 12: The final design (note that it uses a faucet) is shown below.
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Chapter 4

Reasoning about Connections in
Synthesis

Common design practices rely heavily on searching and studying of prior designs, patents, past
design rationale, standards and new product announcements. An important step toward

automating these activities is the creation of repositories of design information indexed by
abstract attributes in addition to low-level structural descriptions. By reusing prior designs or
their components an engineer can save design time, by leveraging off previous worked-out
solutions, and avoid repeating past mistakes, by accessing information on manufacturing or field
failures linked to the retrieved design. Under the case-based design paradigm, an engineer
combines parts of different design cases to synthesize a device that satisfies a useful need.
Physical synthesis entails taking into account possible interactions between components and sub-

assemblies as well as reasoning about the dynamics of the system. In this paper we present a
methodology for physical synthesis of design cases and components retrieved by a case-based
design tool. Connecting elements for the design cases and components are retrieved from a
casebase of connections. Indexing of these connections is based on the mobility restrictions that

they impose on the connected parts. The information necessary to accomplish this task is still of
a high-level nature, namely, the topology of the artifact and its abstract behavior specification.

4.15 Introduction
Global competition, rapid advances in technology, and an increased demand for high
performance have a major impact on the way products are designed and manufactured today. To

remain viable, an organization must reduce design cycle time, improve design quality, avoid
major design errors, and increase its ability to respond to. change. An important step toward
meeting these requirements will be the development and proliferation of design repositories that
provide easy access to information about previous designs, new products, technological
breakthroughs, and past failures. By reusing prior designs an engineer can save design time by
leveraging off previous worked-out solutions. Moreover, the designer can avoid repeating past
mistakes by accessing information on manufacturing or field failures linked to the retrieved
design. This information can also be used to update or adapt an old design in response to
changes in technology, government regulations or market preferences.
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The connection between case-based reasoning (CBR) [30] and traditional engineering design is
clear and well studied [46, 47, 67, 65, 71]. CBR is the method of using previous cases (problem
solving experiences) in the solution of a new problem. Given a new problem, appropriate
previous cases are retrieved from a database, and differences as well as similarities between
current and previous cases are identified. These similarities and differences are used to select
and adapt the retrieved cases to fit current circumstances. At the end of problem solving, the
solved case is stored as a new case to be used in the future. Similarly, engineering designers
often combine parts of different design cases to devise an artifact that satisfies a useful need
[59, 75, 76]. The parts of an artifact are often highly-integrated and tightly-coupled to render

the required function. Although there is no simple and clear correspondence l-etween the
functional characteristics of a device and those of its components, the overall behavior 8 of the
device can be decomposed into sub-behaviors of its components 9, as shown by Sycara and Navin
Chandra in their work on case-based design [46] . They use a graph-based representation of
behavior and apply behavior-preserving transformations to an abstract description of the desired
behavior until a description is found that closely corresponds to some collection of relevant
cases. This approach allows for retrieval of cases without imposing a predetermined
decomposition of the design and it also utilizes knowledge of domain laws. Innovative designs
result when the design parts or components are taken from design cases that are functionally
dissimilar to the current design problem.

Three types of design problems or stages for the design process are recognizable [9]: conceptual,
configuration and parametric design. In conceptual design, a functional requirement is
transformed into an idealized physical concept termed embodiment or configuration (e.g., a
beam). In configuration design, a physical concept is transformed into a configuration with a
defined set of attributes (e.g., an I-beam). In parametric design, values are assigned to the
attributes of t!he configuration. During the conceptual and configuration stages, design
constraints are generated which substantially affect design decisions taken later in the design. In
general, computer-based systems to assist in designing have been specific to each class of design
problem. A case-based design system, however, allows for retrieval of cases with well-defined
design attributes. Therefore, case-based design may allow for simultaneous conceptual and
configuration design, hence providing cohesiveness to the design process.

The aforementioned research on case-based design has mainly focused on such aspects as
behavior representation, and indexing and retrieving of design cases at a high level of
abstraction. Assembly of the design components and sub-assemblies at a more detailed level
were left to the human designer who had to adapt the geometry of the retrieved design cases and

8A device's behavior is what it does, while its function is what it is used for. For example, a clock has the
behavior of moving its hands, while it has the function of telling time. The same function can be achieved through
different behaviors. For example, digital and analog clocks tell time.

9This is achieved by transforming a given behavior specification into alternative decomposable forms that
preserve the overall desired behavior
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chose the appropriate connecting elements, so the resulting design perform as specified.
Automation of this phase of case-based design, where component interactions are recognized and
resolved, is an essential step to have a fully functional case-based design system.

The aim of this paper is to present a methodology for physical synthesis of design cases and
components retrieved by a case-based design tool. The principles and synthesis strategy to be
presented have been implemented to assist a designer during the configuration design phase and
to provide a case-based design system with configuration design capabilities. The information
necessary to accomplish this task is still of a high-level nature, namely, the topology of the
artifact and its abstract behavior specification. In fact, constraints on shapes and dimensional
parameters could be an end result of this stage of the design.

Connecting elements for the design cases and components are retrieved from a casebase of
connections. Indexing of these connections is based on the mobility constraints that they impose
on the connected parts. That is, mobility constraints (i.e., restricted degrees of freedom)
compatible with the overall behavior of the device are used as indexes for the retrieval of
connections and subsequent physical synthesis of components and sub-assemblies. As
mentioned above, an end result of this process is the generation of constraints on dimensional
parameters which have to be taken into account during detailed design. The rest of the paper is
organized as follows. The next section provides an overview of a case-based design system,
CADET. We then present the case-based design process and propose a typology for connecting
elements used in physical synthesis of devices. This is followed by a presentation of
connectivity conditions to be observed by a viable design. Then an example of physical
synthesis is presented. In the appendix we briefly describe the general mobility criterion, and the
effect of dimensional and geometric constraints on the realization of a design.

4.16 A Case-Based Design Tool
Sycara, Navin Chandra and Narasimhan have developed the CADET (CAse-based DEsign Tool)
system, one of the first tools for automated synthesis of mechanical designs that successfully
exploits prior designs for reuse in other contexts. CADET takes as input a high level behavior
specification of a desired artifact and retrieves prior designs or design parts whose composition
delivers the required behavior. CADET's behavior-based indexing algorithms, composition
schemes, and reuse methods have been extensively reported and referenced in the literature
[46, 47, 64, 67, 66, 65, 69, 70, 711.

In CADET, the behavior of a device is represented as a collection of influences between the
various behavior variables10 . We propose in table 4-1 a taxonomy for the behavior variables
present in behavior influence graphs (BIG's) for different energy domains. This taxonomy
allows the mapping of behavior influence graphs and bond graphs [25, 49, 54] with the

1lBehavior variables are those inputs, outputs and state variables chosen to characterize a system's behavior at a
high level of abstraction.
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subsequent advantages the latter possesses for dynamic-system simulation. An influence is a
qualitative differential relation between two variables, one of which is considered the
independent variable and the other the dependent variable. Behavior influences are based on the
notion of confluences [6] and causality [24]. Causality assignments determine the dependency
and independence of the behavior variables hence the direction of the corresponding influences.
In general, a behavior influence graph is a directed graph whose nodes represent behavior
variables and whose edges have assigned qualitative values depicting the influence of one
variables on another. In the following, we briefly review and illustrate the process of index
elaboration and matching. For more details of the approach see [46].

Table 4-1: Taxonomy of behavior variables

1. FLUIDIC 5. FORM
FLOW-VOLUME (QH) LENGTH
FLOWRATE (FH) AREA
FLOW_RATE-UIQUID (FH) VOLUME
FLOW_RATE-LIQUID-WATER (FH) ANGLE
FLOWRATE-LIQUID-OIL (PH) MASS
FLOW_RATE-GAS (FH) MOMENTOFINERTIA
FLOW-RATE-GAS-AIR (FH) 6. ELECTRIC-MAGNETIC
PRESSURE (EH) VOLTAGE (EE)
PRESSURE-LIQUID (ElI) VOTG (
PRESSURE-GAS (EH) CURRENT (FE
PRESSURE-MOMENTUM (PH) CHARGE (QE)

FLUXLINKAGEVARIABLE (PE)
2. KINEMATIC ELECTRICENERGY

TRANSLATION MAGNETIC-ENERGY
TRANSLATION-DISPLACEMENT (QT) ELECTRICPOWER
TRANSLATION-VELOCITY (FT) MAGNETICFLUX_ DENSITY
TRANSLATION-ACCELERATION CAPACITANCE
ROTATION RESISTANCE
ROTATION-DISPLACEMENT (QR) INDUCTANCE
ROTATION-VELOCITY (FR) 7. MECHANICALENERGY
ROTATION-ACCELERATION GRAVMTATIONALENERGY

3. KINETIC KINETICENERGY
FORCE (ET) ELASTIC-.ENERGY
LINEARMOMENTUM (PT) MECHANICALPOWER
MOMENT (ER)
ANGULAR-MOMENTUM (PR) 8. TEMPORAL
STRESS TIME

FREQUENCY

4. THERMAL PERIOD
TEMPERATURE (Et)
ENTROPY-FLOW (Ft)
HEATENERGY
HEAT-FLUX

FIRST LETTER SECOND LETTER

E: Effort e T: Mechanical Translational Systems
P: Momentum= f Edt E: Electrical Systems

F: Fow R: Mechanical Rotational Systems
Q: Displacement = J Fdt H: Hydraulic Systems

t: Thermal Systems

Consider the design of a device that controls the flow of water into a flush tank. The behavior of
the flush tank can be specified as follows: As the water level (D) in the tank increases, the rate of
water flow into the tank (Q) should decrease. This behavior specification is expressed in terms
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of the influence D - Q, and this influence is used as an index for retrieving cases. If no case
can be found that matches a particular design specification, it will be desirable to find cases
whose composed behavior is equivalent to the specified behavior.

Xt

~S •saw IXCj==
D -Tank D. Q

Figure 4-26: A flush tank and its behavior specification

Figure 2-8 shows a possible solution to the problem. Three cases have been identified (a float, a
seesaw, and a tap) and correspondingly represented by the following influences: D --- + X1,
X1 --:---X2 and X2 -L._ Q. The combined effect of these influences is equivalent to that in the
original specification. To find cases whose composition will deliver the specified behavior, the
system first automatically decomposes the specified behavior into a behaviorally equivalent set
of influences and then uses each influence as an index for matching precedents in the casebase.

CADET uses behavior-preserving transformations to generate new indices for retrieving
previously inaccessible cases. These transformations are mathematically correct according to the
Chain Rule for Derivatives for function composition. For example, an influence between two
variables can be elaborated in series or in parallel, and each time an influence is elaborated a new
variable is introduced (hypothesized) as shown in figure 4-27.

X- + INITIAL INFLUENCE GRAPH

X - Z Y Y SERIES ELABORATION

\ / PARALLEL ELABORATION

x y PARALLEL AND SERIES
X WELABORATIONS

Figure 4-27: Series and parallel elaborations in behavior influence
graphs

The influences implied by domain laws may be used to elaborate a given goal. For instance,
assume it is our goal to achieve the influence: X-- Z. Also assume that there are no designs
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that can achieve this effect directly. If, however, there is some domain principle which states
that a quantity U influences Z, then the goal may be achieved by having X influence U. The goal
is hence elaborated to: X-- U-- Z. This influence graph is used as a new index into the
casebase. If cases or parts of cases with influences that match the new goal are found, they are
retrieved and used.

4.17 Physical Synthesis of Design Cases
Sycara, Navin Chandra and Narasimhan [46, 65] have proposed the following steps for case-
based design. These steps do not have to be followed sequentially, but are interleaved during
problem solving.

1. Development of a Behavioral Description. The behavior of the desired artifact is
described by qualitative relations (influences) describing how the inputs and
outputs are related.

2. Retrieval of Cases. A collection of design cases or case parts whose behavioral
descriptions bears similarities to the specified behavioral description is identified
and retrieved. Retrieval is performed using not only the existing features of the
input specification, but also indices arising from index transformations.

3. Development of a Synthesis Strategy. During this stage a description of how the
cases and case pieces will fit together is developed.

4. Physical Synthesis. Realization of the synthesis strategy at the physical level.
During physical synthesis the connecting elements between the retrieved
components and sub-assemblies are determined. This entails taking into account
possible interactions between components and sub-assemblies as well as reasoning
about the dynamics of the system. Moreover, physical adaptations of the cases,
needed to satisfy the desired behavior, are identified.

5. Verification. Undesirable interactions not identified during physical synthesis
could lead to non-conformance of the design to the desired specifications.
Qualitative and quantitative simulation are used during this phase.

6. Debugging. Explanations for non-conformance to the desired specifications are
identified. This step involves a process of asking relevant questions and modifying
the cases based on a causal explanation of the bug.

Previous work on case-based design for the CADET system has focused mainly on the first two
steps. In this paper we investigate and propose a methodology for developing a synthesis
strategy (step 3) and for physical synthesis of components and sub-assemblies retrieved from a
casebase (step 4).

Types of Connections and Connectivity Graphs
Behavior influence graphs depict the dynamics of the systems they represent. The behavior
preserving elaboration schemes that have been developed for the CADET system ensure
correctness at the level of device behavior. The influences in a BIG between behavior variables
(which are selected inputs, outputs and state variables) allow the qualitative simulation and
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analysis of the dynamics of the related system. Labels on the edges (+, -, 0) provide first-order
information about variable relationships. Higher-order information can also be included in this
representation, although different elaboration rules have to be used to reason in such a context.

A drawback, however, of using an abstract representation is that a synthesis that looks acceptable
at a high level of abstraction might fail to operate at a lower level. For example, at a high level of
abstraction, a seesaw like device produces up and down motion. If this behavior is required in
some context, the seesaw would be a candidate for synthesis. If we were to now look at the
behavior of the seesaw in more detail, we would find that the ends of the seesaw move in an arc,
not just up and down. To connect the seesaw to other components will require special
connections that take into account the are motion. The aim of this work is to provide and
implement a methodology for the selection of appropriate connections from a casebase of
connections.

A behavior influence graph also renders connectivity information between the components and
sub-assemblies that have been retrieved after matching individual influences or groups of
influences against the casebase of designs. Consider, for instance, the behavior influence graph
elaborated from a specification for a hot-cold water faucet which allows independent control of
the temperature and flow rate of water (figure 4-28). The variables in this graph are:
displacement signal for temperature (ST), displacement signal for flow rate (SF), displacements
(Xc and XH), flow rates (Qc, QH, and QM), and temperature of the mix (TM). Figure 4-28 also
shows the sets of influences that were matched to retrieve the various components: seesaw,
tap-i, tap-2 and T-pipe. Interactions between these components are apparent from their sharing
of behavior variables. Specifically, seesaw and tap-1 interact through X¢, seesaw and tap-2
through XH, tap-1 and T-pipe through Qc, and tap-2 and T-pipe through QH" Moreover, by
observing the nature of the interacting variables, we can conclude that the connections between
the taps and the seesaw have to be kinematic, since they impose constraints on kinematic
variables 11, displacements. On the other hand, the connections between the taps and the T-pipe
are hydro-kinematic, since they impose constraints on fluidic variables, the flow rates.

SEESAW

Figure 4-28: Behavior influence graph for hot-cold water faucet

Accordingly, we have identified the following four types of connections:

1 tKinematic variables are those representing translation or rotation.
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1. Kinematic Connections. Their function is to transmit a force or moment. As a
result they restrict the mobility of the connected parts, translationally or
rotationally. Revolute, prism and spherical joints, and screw pairs are examples of
this type of connection.

2. Hydro-kinematic Connections. Their function is to transport a fluid or transmit a
hydraulic pressure. They may or may not restrict the mobility of the connected
parts. Flexible and rigid pipes, and hollow kinematic connections having a passage
for fluid are examples of this type of connection.

3. Electro-kinematic Connections. Their function is to transport an electric current or
transmit a voltage. They may or may not restrict the mobility of the connected
parts. A flexible electric wire and kinematic connections made of an electro-
conductor material are examples of this type of connection.

4. Thermo-kinematic Connections. Their function is to transfer thermal energy. They
may or may not restrict the mobility of the connected parts. Kinematic connections
made of thermo-conductor material are examples of this type of connection.

Basically, hydro- electro- and thermo-kinematic connections are kinematic connections with the

properties of being hollow to transport a fluid, or made of an electro- or thermo-conductor

material, respectively. Hence, these three types of connections can be easily realized by adapting

kinematic connections. In the remainder of this paper we will deal with the selection of

kinematic connections which can be easily modified to provide, if necessary, one or more of the

other three functions specified above.

Since we are interested in the synthesis of devices which transmit or control relative movement,

we are mostly concerned with rigid bodies connected together by joints. Usually the joints are

formed by simple contact between adjacent bodies, though occasionally devices contain joints

which are flexible, whether by belt or band, by sprint ome other elastic component. The

parts of two components of a device which are cot - together form a kinematic pair.

Kinematic pairs are classified according to the following characteristics [53]:

"* Type of motion. The motion of a point on one element relative to the other may be
a space, surface or line motion.

"* Number of degrees of freedom. A joint may restrict 1, 2, 3, 4 or 5 of the degrees
of freedom of the pair of elements' 2.

"* Type of contact. This may be surface, line or point contact.

"* Type of closure. In a self-closed kinematic pair contact between elements is
maintained by construction. On the other hand, in the case of a force-closed
kinematic pair a force is necessary to maintain contact.

" Lower pairs: There is surface contact between elements, so they are used to
transmit high loads. These are some of the lower pairs (see figure 4-29):

1. Spherical pair allows three degrees of freedom.

12A free rigid body has six degrees of freedom.
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2. Planar pair allows three degrees of freedom.

3. Cylindrical pair allows two degrees of freedom.

4. Revolute-prism pair allows two degrees of freedom.

5. Slotted sphere pair allows two degrees of freedom.

6. Turning or revolute pair allows one degree of freedom.

7. Prism or sliding pair allows one degree of freedom.

8. Screw or helical pair allows one degree of freedom.

EHigher pairs. There is line or point contact between elements, so they provide low-
friction connections. They constitute the basis for gears, roller-bearings and cams.
These are two higher pairs (see figure 4-30):

1. Cylinder-sphere pair allows four degrees of freedom.

2. Plane-sphere pair allows five degrees of freedom.

3. Plane-cylinder pair allows four degrees of freedom.

IM 1 t Gemv'ef S&O"Wem O"_g
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HwiH

Figure 4-29: Lower kinematic pairs
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CYUNDER-SPHERE PAIR PLANE-SPHERE PAIR PLANE-CYLINDER PAIR

Figure 4-30: Higher kinematic pairs

Connectivity information given by a behavior influence graph can also be represented by means
of a connectivity graph. The nodes in a connectivity graph represents the various retrieved
components or sub-assemblies, while the edges indicate the existence of some type of
connection. For example, figure 4-31 shows the connectivity graph for the hot-cold water faucet
of figure 4-28. As mentioned above, the connections between the seesaw and the taps are
kinematic, thus they restrict one or more degrees of freedom. However, the hydro-kinematic
connections between the taps and the T-pipe may or may not restrict degrees of freedom, that is,
a flexible pipe could be used to connect these components.

Figure 4-31: Connectivity graph for hot-cold water faucet

4.18 Selection of Connections
As mentioned above, appropriate connections between components and sub-assemblies are
essential to ensure the correct behavior of a synthesized device. Kinematic, hydro-kinematic,
electro-kinematic and thermo-kinematic connections make possible for the different parts of an
artifact to interact in these four domains so their assembly achieves the required behavior.
Conversely, a wrong type of connection generates undesirable interactions among components.
In what follows we will focus on those interactions that determine the mobility of the parts. That
is, we will present connectivity conditions that a device have to fulfill to ensure that it is
kinematically viable and correct.
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The augmented connectivity graph shown in figure 4-32 represents the components, and their
connectivities, retrieved after matching a behavior influence graph. "dof-i" for the component or
sub-assembly "comp-i" indicates its degrees of freedom (mobility) when taken in isolation, i.e.,
disconnected from the rest of components. A rigid body has six degrees of freedom in general
motion and three degrees of freedom in plane motion. A sub-assembly, constituted of two or
more connected parts, can have more than six degrees of freedom in general and more than three
in plane motion. For example, in general, a tap has seven degrees of freedom since six
coordinates are necessary to specify the position of the tap in space and one additional parameter
is needed to characterize the variable aperture of the tap. In figure 4-32, "rdof-ij" for the
connection between components "comp-i" and "comp-j" indicates the number of degrees of
freedom restricted by such connection. For example, a spherical connection restricts three
degrees of freedom.

Figure 4-32: A generic connectivity graph

4.18.1 Kinematic Inputs
An artifact is a system, that is, a collection or interconnection of functional units which interact
with each other and with an environment to perform some purposeful behavior. As a system, it
is possible to distinguish among inputs (excitations), outputs (responses) and state variables.
Inputs (outputs) are associated with those nodes of a behavior influence graph which have in-
degree (out-degree) 13 zero. Such is the case of the input signals ST and SF in the behavior
influence graph for the hot-cold water faucet of figure 4-28. Some of the inputs to a system
could be translational or rotational signals, while others could be electric, hydraulic or thermal
signals.

Kinematic inputs are the rotational or translational signals required to define the configuration of

l:3The in-degree (out-degree) of a node is equal to the number of edges incident into (out of) the node.



75

a device when the non-kinematic components (fluids, electric current and heat flux) have been
removed from the connecting elements. That is, when only the kinematic function of the hydro-
electro- and thermo-kinematic connections is taken into account. Consider, for example, the

sheet-metal bending machine of figure 4-33 whose behavior influence graph is shown in figure
4-34. We note from the behavior influence graph that this device has one input, SX, and one
output, Y. However, from a kinematic point of view this device requires two parameters

(kinematic inputs) to define its configuration, one for the taps, seesaws, rigid body and frame
sub-assembly, and the second for the piston, cylinder and frame sub-assembly. These two sub-

assemblies interact by means of a medium that is not a rigid body but a fluid.

I y

TAP-1 TAP-2 CYN RTAP-3 TAP-4

Figure 4-33: Sheet-metal bending machine
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Figure 4-34: Behavior influence graph for sheet-metal bending machine

Let G be the behavior influence graph of a device and let G* be the resulting behavior influence
graph after removing non-kinematic variables from G. Then the number of kinematic inputs is
equal to the number of kinematic variables (nodes) in G* with in-degree zero. Also, the number
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of kinematic inputs is equal to the number of degrees of freedom of the device. Figure 4-35
shows the influence graph of kinematic variables for the sheet-metal bending machine of figure
4-33. As expected, it contains two nodes with in-degree zero; therefore, this device has two
degrees of freedom.

SEESAW-i TAP-1
..... ..... .................

4Y,
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..... ......... ...
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Figure 4-35: Behavior influence graph for sheet-metal bending machine
containing only kinematic variables

If G*i is a connected component of G*, then the number of degrees of freedom of the sub-
assembly (subgraph) associated with the connected component in the behavior influence graph
14 is equal to the number of kinematic variables (nodes) in G*i with in-degree zero. The metal

bending machine has two kinematically independent sub-assemblies: taps, seesaws, rigid body
and frame; and piston, cylinder and frame sub-assembly. Each of them has one degree of
freedom.

4.18.2 Connectivity Conditions
Selection of the appropriate connections between components and sub-assemblies is based on the
number of degrees of freedom (dof's) that the connections restrict. Thus, a spherical or planar
pair is chosen if three dof s have to be restricted; a cylindrical, revolute-prism or slotted sphere
pair is chosen if four dofts have to be restricted; a cylinder-sphere pair is chosen if two dof s
have to be restricted; and so on. These connections are retrieved from a casebase that contains
those mentioned in section 4.17.

Given a connectivity graph of the retrieved components and sub-assemblies composing a device,
the first step for the selection of connections is to augment the connectivity graph by adding a
node with zero degree of mobility that represents the frame of the device. This step is necessary
since static elements are not retrieved by a case-based design system such as CADET which

14 A sub-assembly associated with a connected component in the behavior influence graph will be called a
kinematically independent sub-assembly.
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represents behavior based on the dynamic characteristics of the design cases. The next step is to
assign to each edge of the connectivity graph the number of degrees of freedom, rdof-ij, that the
associated connection would restrict. The assigned restricted degrees of freedom for each edge
of the connectivity graph have to satisfy the following conditions. These conditions are based on
the basic mobility criterion of GrUbler [ 15] and Malytsheff (37] (see appendix).

1. The number of degrees of freedom of the device is equal to

I dof-i - 1 rdof-ij
nodes arcs

2. The number of degrees of freedom of a kinematically independent sub-assembly
(subgraph) associated with a connected component in a behavior influence graph is
equal to

dof-i- E rdof-ij
nodes arcs

subgraph subgraph
3. Edges that depict kinematic connections restrict at least one degree of freedom

since, by definition, kinematic connections restrict the mobility of the connected
parts.

4. A sub-assembly (subgraph) cannot have negative degrees of freedom. Otherwise
the design is either wrongly over-constrained, or possesses general or overclosing
constraints which have to be considered during detailed design (see appendix).
The number of degrees of freedom of a sub-assembly is equal to

dof-i- E rdof-ij
nodes arcs

subgraph subgraph

5. A sub-assembly (subgraph), with only non-zero rdof's and containing an input
component15 and frame has a number of degrees of freedom greater than or equal
to the number of kinematic input variables of the input component. This condition
ensures the required degree of mobility of the input component(s).

6. A sub-assembly (subgraph), with only non-zero rdof's and containing an output
component1 5 and frame has a number of degrees of freedom greater than or equal
to the number of kinematic output variables of the output component. This
condition ensures the required degree of mobility of the output component(s).

7. A node a (an assembly), with M neighboring nodes bi, can substitute for N nodes ai
(its sub-assemblies) as long as

N N

dof-a - dof-ai - • rdof-ai aj
iij

i<j
and

"15An input component is associated with a subgraph (of a behavior influence graph after removing non-kinematic
variables) that has kinematic variables (nodes) with in-degree zero. An output component is associated with a
subgraph that has kinematic variables (nodes) with out-degree zero.
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N
rdof-abj = Xrdof-aibj

i=1

as shown in figure 4-36. Conversely, N nodes making up an assembly can
substitute for the single node representing the assembly.

Figure 4-36: Connectivity graphs for an assembly and its components

8. After removing the frame, the number -f degrees of freedom of a device increases
by at least six (or three for planar devices). This condition depicts one of the
functions of the frame, which is to provide a static reference system for the
specification of the behavior of the device.

The above equations, defining the number of degrees of freedom of a device a., the difference of
the freedoms of the individual components and the freedoms restricted by their connection, are
based on the mobility equation for a mechanism of Gruibler [15] and Malytsheff [37]. This
equation, however, is not a sufficient criterion in general. Gri'bler-Malytsheff s equation is not
correct under certain geometric configurations that generate redundant and passive freedoms,
and overciosing and general constraints. These deviations from the basic mobility criterion are
the result of the geometric arrangement of the parts in the final assembly of a device.
Specifically, they are due to parallelism and/or collinearity of axes of motion, constraints on
dimensional parameters, and less frequently topology of the artifact. Their presence, in general,
entails strict tolerances and manufacturing specifications, and the slightest deviation from such
;pecifications results in a non-operating device. Case-based design, however, enables the
designer to choose final configurations that do not exhibit such deviant behaviors. We describe
in the appendix these particular configurations.

4.19 Example
Consider the design of the hot-cold water faucet whose behavior influence graph and
connectivity graph were shown in figures 4-28 and 4-31, respectively. Following the criterion
given in section 4.18.1, this device has two degrees of freedom. Figure 4-37 shows the same
connectivity graph augmented with the frame node and the degrees of freedom of each
component (frame, 0-dof, seesaw, 3-dof, and T-pipe, 3-dof) and sub-assembly (taps, 4-dof). The
connection between the body and the gate of the taps is known to be a sliding pair, which
restricts two degrees of freedom in plane motion (five degrees in general motion). The seesaw is
the input component with two kinematic input variables, ST and SF, while the taps are output
components with one kinematic output variable each, XC and XH.
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Figure 4-37: Augmented connectivity graph for hot-cold water faucet

A•lthough the principles established in section 4.18.2 as connectivity conditions apply to general
motion, we have restricted this example to plane motion. Figure 4-38 shows the lower pairs for
plane motion, including also the rigid connection which restrict three degrees of freedom. Figure
4-39 shows the components of the faucet retrieved by the case-based reasoner and a collection of
connecting elements from where the connections will be selected.

TYPE RESTRICTED RESTRICTED RESTRICTED
DEGREES OF TRANSLATIONS ROTATIONSFREEDOM

RIGID 3 2 1

REVOLUTE 2 2 0

SUDER 2 1 1

ROLL- 1 1 0
SLIDER

i0

RJiOI REVOLUJT SUDER

Figure 4-38: Lower pairs for plane motion

A program that generates sets of connections which verify the eight connectivity conditions of

section 4.18.2 has been implemented. The connections for the hot-cold water faucet were chosen
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COMPONENTS

FRAME SEESAW TAP T-PIPE

CONNECTIONS

a
SUDER ROLL-SUDER REVOLUTE

FLEXILEPIPE FLEXIBLE-PIPE RIGID CONNECTION

Figure 4-39: Components and connections used in the design of
hot-cold water faucet

from those shown in figure 4-39 which also satisfy the following conditions:

"* SEESAW & TAP- 1: Connections that restrict one or two degrees of freedom.

"* SEESAW & TAP-2: Connections that restrict one or two degrees of freedom.

"* T-PIPE & TAP- 1: Connections that restrict none, one or three degrees of freedom.

"* T-PIPE & TAP-2: Connections that restrict none, one or three degrees of freedom.

"* SEESAW & FRAME: Connections that restrict none or one degree of freedom.

"* T-PIPE & FRAME: Connections that restrict two or three degrees of freedom.

"* TAP- I & FRAME: Connections that restrict node or two degrees of freedom.

"* TAP-2 & FRAME: Connections that restrict none or two degrees of freedom.

Thirty-six different feasible configurations were generated from a total of 576 (24x 32) possible
configurations for the given space of connections. Figure 4-40 shows the connectivity graphs and
physical configurations for five of these feasible configurations. These configurations have the
same topology, but they differ from each other either in the election of the connecting elements
or in whether or not the components are connected to the frame.

4.20 Conclusions
In this paper we have presented a methodology for physical synthesis of design components and
sub-assemblies retrieved under a case-based design framework. Indexing mechanisms for the
connecting elements between the retrieved parts were developed based on mobility conditions
defined by design specifications. The goal of this work was to provide to a case-based design



81

TAII w AP# AW - UE TAP-

(3) (3)

Figure 4-40: Five feasible configurations for hot-cold water faucet

system with reasoning mechanisms for design synthesis at the configuration level. Multiple

feasible assembly modes for the design parts enlarge the universe of design alternatives to be

presented to the design engineer. The information necessary to accomplish this task is still of a
high-level nature, namely, the topology of the artifact and its abstract behavior specification.

However, constraints on the final geometric arrangement of the parts could be a side-product of

this stage. Verification of the final configuration to detect and reason about dimensional and

geometric constraints is a pending issue for further study and implementation in our system.

Appendix: Dimensional and Geometric Constraints in Physical Synthesis

As mentioned in section 4.18.2, the mobility criterion on which the given connectivity conditions
were based is not valid for general configurations. The most general mobility equation is given

by Bagcimi [3, 4] as
Fi Fo+M+FcFFp

where Fi is the number of (kinematic) inputs required to drive the mechanism (equal to the

number of degrees of freedom).

iOU t- r"N
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Fo is the basic mobility given by Grubler [15] and Malytsheff [37] as

F0 = q(n-1)- Y (q-i)Ni
dof's of

pairs

where q is the number of the components of the general rigid body displacement (three rotations
and three translations) that can take place in the space of motion of the mechanism. q = 6 in
general rigid body motion and q = 3 in plane motion. n is the number of links (rigid
components) including the frame. Ni is the number of pairs permitting i degrees of motion for
one link relative to the adjacent one.

M is the total number of general constraints. It is equal to the sum of the number of general
constraints (the number of non-existing components of the general rigid body displacement) in
each loop. Figure 4-41 shows a planar mechanism with one general constraint on rotation about
the axis normal to the plane of motion.

Figure 4-41: Mechanism with one general (rotational) constraint

F. is the total number of overclosing constraints due to geometric and dimensional constraints in
a single loop16 , in a group of loops, and in each gear train loop.

F = + +Fc1 +Fcg

where

F, (Kj -.-1)
group of

loops

and Kj if the number of loops in the jth group that exhibits overclosing constraints. Figure 4-42
shows a planar mechanism with two overclosing constraints due to parallelism between links.

Fp is the total number of passive freedoms. These are freedoms that due to geometry and
topology17 the mechanism never experiences. For example, the spherical pair of the CSC
mechanism shown in figure 4-43 has its rotational freedom about the axis normal to the
a,13-plane passive.

Fr is the total number of redundant freedoms. These are freedoms of motion of some

16Bennett's 4R four-bar mechanism, spherical 4R mechanisms and Bricard's 6R six-bar mechanism are examples

of mechanisms showing single loop overclosing constraints.

7TThe topology of a device is defined by its components and their connections.
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Figure 4-42: Mechanism with two overclosing constraints

Figure 4-43: Mechanism with one passive freedom

components which do not affect the input and output motion of the whole assembly. For
example, the RSSR mechanism shown in figure 4-44 experiences a redundant freedom of motion
about the axis of the coupler link connecting the two spherical pairs. Redundant rotational
freedoms occur when the axes of rotation of pairs (spherical, cylindrical or revolute pairs)
belonging to the same link are collinear. Redundant translational freedoms occur when the axes
of translation of pairs (prism, cylindrical, planar or revolute-prism pairs) belonging to the same
link are parallel.

Overclosing and general constraints are the result of the geometric arrangement of the parts in
the final assembly of a device. Specifically, these constraints are due to parallelism or
collinearity of axes of motion and constraints on dimensional parameters. Their presence, in
general, entails strict tolerances and manufacturing specifications, and the slightest deviation
from such specifications results in a non-operating device. The mechanism shown in figure
4-42, for example, would get stuck if "perfect parallelism" were not achieved between members.
A robust design should not depend on stiff tolerances and precision engineering to fulfill its
required function. Moreover, wear on parts and joints affects dimensional parameters and
introduces misalignment errors and undesirable forces and behaviors. Thus, a device
configuration generated by our system, which lacks general and overclosing constraints
(M = Fc = 0), is expected to be more robust than another that relies on those constraints to
achieve a behavioral requirement. Verification of the final configuration to detect and take into



84

R

AA

Figure 4-44: Mechanism with one redundant freedom

account overclosing and general constraints is needed and its automation constitute a pending
issue for implementation in our system.

Passive freedoms result from not only the geometric arrangement of the parts but also the
topology of the artifact, as depicted by the CSC mechanism of figure 4-43. In this example,
there is no dimensional constraint or geometric configuration that eliminates the passive freedom
of the spherical joint. As with overclosing and general constraints, detection of and reasoning
about passive freedom have not been fully implemented in our system.

Redundant freedoms occur under very specific circumstances which have been defined above.
Redundant freedoms are not present as long as collinearity or parallelism of axes of rotation and
translation of pairs on the same member is avoided. For example, in the design shown in figure
4-40 (e) , the sliding connections between the tap's bodies and frame, and the tap's bodies and

gates were not placed parallel to avoid introducing a redundant freedom. In practice, however,
redundant freedoms, and also passive freedoms, may be kept in the mechanism for operation and
lubrication. This entails their appropriate identification and consideration in the mobility
equation.

The previous considerations can be used to adapt a device to perform certain function. For
example, a rigid five-member structure similar to that shown in figure 4-42, whose function
would be merely to support a vertical load, could be adapted, by imposing geometric and
dimensional constraints, for a rigid-body guidance application. Moreover, reasoning about
geometric and dimensional features of a device, in addition to about its structure, enables a case-
based design system to generate more configurations for a given specification.
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Chapter 5

Representation and Reasoning
about Performance

5.21 Introduction
Case-Base Reasoning (CBR) [30] is the problem solving paradigm where previous experiences
are used to guide problem solving. Cases similar to the current problem are retrieved from
memory, the best case is selected from those retrieved and compared to the current problem.
The precedent case is adapted to fit the current situation, based on the identified differences
between the precedent and the current case. Successful cases are stored so they can be retrieved
and re-used in the future. In this way, learning is integrated with problem solving. Failed cases
are also stored so that they will warn the problem solver of potential difficulties and help recover
from failures. If a current case recalls a past failure, then the problem solver is warned not to
attempt the failed solution.

The connection between case-based reasoning and traditional engineering design is clear and
well studied [46,47, 67, 65, 71]. Engineering designers often combine parts of different design
cases to devise an artifact that satisfies a useful need [59, 75, 76]. For design, case retrieval is
done based not only on geometric features but also on abstract descriptions of the device
function and behavior1 8, as well as on its performance and topology. The parts of an artifact are
often highly-integrated and tightly-coupled to render the required function. Although there is no
simple and clear correspondence between the functional characteristics of a device and those of
its components, the overall behavior of the device can be decomposed into sub-behaviors of its
components 19 , as shown by Sycara and Navin Chandra in their work on case-based design [46].
They use a graph-based representation of behavior and apply behavior-preserving
transformations to an abstract description of the desired behavior until a description is found that

18A device's behavior is wist it does, while its function is what it is used for. For example, a clock has the
behavior of moving its hands, while it has the function of telling time. The same function can be achieved through
different behaviors. For example, digital and analog clocks tell time.

19This is achieved by transforming a given behavior specification into alternative decomposable forms that
preserve the overall desired behavior
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closely corresponds to some collection of relevant cases. This approach allows for retrieval of
cases without imposing a predetermined decomposition of the design and it also utilizes
knowledge of domain laws. Innovative designs result when the design parts or components are
taken from design cases that are functionally dissimilar to the current design problem.

Frequently, high-level qualitative descriptions of function or behavior are not appropriate for
retrieval and synthesis of designs which have to perform according to a low-level numerical
specification. This situation demands for a behavior representation that allows for reasoning at
the numerical level while still eases case indexing and retrieving when less important details are
left ignored. The aim of this paper is to present a representation of behavior that includes
performance information such as ranges of operation and types of response to various input
signals. The high-level behavior representation and reasoning mechanisms used in a case-based
design tool such as CADET [46] is used as foundation for developing the lower level
abstractions and representations needed for reasoning about the performance of a device and
performance-based retrieval of design cases.

This paper is organized as follows. The next section provides an overview of CADET, a case-
based design tool: specifically, the first-order behavior influence representation. We then
present an extension of the behavior representation in CADET which takes into account second-
order information. This is followed by a presentation on behavior representation and reasoning
which includes low level performance information...

5.22 Behavior Representation in CADET
Sycara, Navin Chandra and Narasimhan have developed the CADET (CAse-based DEsign Tool)
system, one of the first tools for automated synthesis of mechanical designs that successfully
exploits prior designs for reuse in other contexts. CADET takes as input a high level behavior
specification of a desired artifact and retrieves prior designs or design parts whose composition
delivers the required behavior. CADET's behavior-based indexing algorithms, composition
schemes, and reuse methods have been extensively reported and referenced in the literature
[46, 47, 64, 67, 66, 65, 69, 70, 71]. CADET has access to a case memory and engineering

domain laws and principles. Each case is represented in terms of a multi-layered representation
expressing function, behavior and structure of the device and relations between them.
Abstractions that can be used for indexing a case are: (1) linguistic descriptions, (2) functional
block diagrams, (3) behavior influence diagrams, (4) qualitative states, (5) structural features,
and (6) performance features. This paper will focus primarily on the integration of performance
features with the influence diagram representation of behavior.

In CADET, the behavior of a device is represented as a collection of influences between the
various behavior variables20 . In the following, we briefly review and illustrate the first-order

2°Behavior variables are those inputs, outputs and state variables chosen to characterize a system's behavior at a
high level of abstraction.
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behavior representation used in CADET and the process of index elaboration and matching. In
the next section, second-order influences are presented as an extension to the CADET
representation. Second-order information al-'.ws for reasoning at lower levels of abstraction,
hence closer to levels of abstraction used to describe performance.

First-Order Behavior Influence Representation
A first-order influence is a qualitative differential relation between two variables, one of which is
considered the independent variable and the other the dependent variable. Behavior influences
are based on the notion of confluences [6] and causality [24]. Causality assignments determine
the dependency and independence of the behavior variables hence the direction of the
corresponding influences. In general, a behavior influence graph 21 is a directed graph whose
nodes represent behavior variables and whose edges have assigned qualitative values depicting
the influence of one variables on another. The sign on an influence depicts the direction of
variation of the dependent variable with respect to the independent one. For the case where there
exists a mathematical relation between the independent and dependent variables x and y, i.e.,
y =ftx, z), with f a differentiable function, the sign on the influence is given by the sign of the
partial derivative of f with respect to x. In the following, we illustrate the process of elaboration
of new behavior variables. For more details of the approach see [46].

Given an influence graph representing a required behavior, behavior-preserving transformations
can be used to generate new indices for retrieving of previously inaccessible designs. These
transformations are mathematically correct according to the Chain Rule for Derivatives for
function composition. An influence between two variables can be elaborated in series or in
parallel, and each time an influence is elaborated a new variable is introduced (hypothesized) as
shown in figure 4-27. Influences implied by domain laws may also be used to elaborate a given
goal. For instance, assume it is our goal to achieve the influence: X--Z. Also assume that
there are no designs that can achieve this effect directly. If, however, there is some domain
principle which states that a quantity U influences Z, then the goal may be achieved by having X
influence U. The goal is hence elaborated to: X---U----Z. This influence graph is used as a
new index into the casebase. If cases or parts of cases with influences that match the new goal
are found, they are retrieved and used.

Consider the design of a device that controls the flow of water into a flush tank. The behavior of
the flush tank can be specified as follows: As the water level (D) in the tank increases, the rate of
water flow into the tank (Q) should decrease. This behavior specification is expressed in terms
of the influence D - Q, and this influence is used as an index for retrieving cases. If no case
can be found that matches a particular design specification, it will be desirable to find cases
whose composed behavior is equivalent to the specified behavior.

2 1Unless otherwise stated, a behavior influence graph contains only first-order qualitative information
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Figure 5-45: Series and parallel elaborations in first-order behavior influence
graphs
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Figure 5-46: A flush tank and its behavior specification

Figure 2-8 shows a possible solution to the problem. Three cases have been identified (a float, a
seesaw, and a tap) and correspondingly represented by the following influences: D -1--+ Xl,
X1 -- )-X2 and X2 - D. The combined effect of these influences is equivalent to that in the
original specification. To find cases whose composition will deliver the specified behavior, the
system first automatically decomposes the specified behavior into a behaviorally equivalent set
of influences and then uses each influence as an index for matching precedents in the casebase.

The first-order influence behavior representation has the highest level of abstraction. The class
of strictly monotonic relations between two variables is divided into two families, each
associated with the positive or negative influence, as depicted in figure 5-4722. A high level of
abstraction facilitates indexing and retrieving of design cases which behave according to a sub-
graph of the behavior influence graph representing the required behavior. Retrieving is carried
out by matching behavior variables and influence signs of the sub-graph. A drawback of a high
level of abstraction is the lost of information on certain performance characteristics which are
better defined by a more detailed representation of the relations between behavior and design
variables. At the lowest level of abstraction these relations can be represented by algebraic and
differential equations. However, equations cannot be used as indices, much less for efficient

22Zero-furst-order influence is not shown since it is associated with static behavior and only dynamic behavior
will be treated in this paper.
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retrieving of design cases. As a result, influences with intermediate levels of abstraction need to
be explored as a means for representing and retrieving design cases which differ from each other
not only by the monotonicities of their influences but also by other forms of lower level
characteristics of the variables relations. Following we present these other forms for variable-
dependency representation.

V V

x x
x +-- --- Y x -- - • Y

Figure 5-47: Positive and negative first-order influences

5.23 Second-Order Behavior Influence Representation
Higher-order information on the variation of the dependent variable with respect to an
independent variable can also be represented in a behavior influence graph. For the case where
there exists a mathematical relation between the related variables, the higher-order influences are
given by the signs of the second, third, and so on, partial derivatives in addition to the sign of the
first derivative (first-order influence). The highest the order of the representation, the lowest the
level of abstraction. The number of indices for retrieving of design cases increases with the
order of the representation.

In particular, when there is an implicit mathematical dependency, second-order influences
describe the interaction of two variables in their influence on a third, determined by the sign of
the mixed partial second-order derivative, or second-order properties of the relation between two
variables, given by the sign of the univariate second-order partial derivative. The first type of
second-order relationship is analogous to the concept of qualitative synergy found in qualitative
probabilistic network [77] and it requires hyper-edges for its representation. The second type of
relation has been proposed as an extension for monotonic influence diagrams [38, 39] and can be
represented by arcs, as the first-order influences. Specifically, this level of abstraction allows for
the description and representation of both monotonic and convexity properties of the dependency
relations between behavioral parameters. Subsequent retrieval of design cases with the
appropriately shaped response is then possible. Figure 5-48 shows the classes of monotonic
dependencies that can be characterized with a second-order representation. Six families of
variable dependencies can be identified according to the the type of first- and second-order
influence, the latter depicted by a boxed sign. They are a subset of the relationships represented
solely on the basis of first-order influences, and have as additional constraint the invariance of
the sign of their second-order derivatives. As a result S-shaped responses cannot be represented
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nor retrieved.

x x x

x x x

Figure 5-48: Second-order influences

As with first-order influences, higher-order influences can be transformed by behavior-
preserving elaborations so new variables are introduced and new indices generated. Figure 5-49
shows series and parallel elaborations when both first- and second-order influences are used for
behavior representation. Hyper-edges make sub-graph matching more difficult; however, they
can be ignored by setting the corresponding second-order influence to zero (in the figure,
Op5'= 0)

5.24 Representation and Reasoning about Performance
It is not enough to capture the qualitative behavior of a device. Information as to its performance
(how well the device performs the specified behavior) is crucial. Different performance
requirements for the same behavior specification may entail different designs. For example,
although the basic behavior of all valves is the same, there are hundreds of valve types primarily
differentiated by performance. Similarly, the type of a hydraulic turbine (to transform hydraulic
energy to mechanical energy) is determined by the reservoir head, although all types of turbines
have similar behavior. Performance is difficult to represent in machine intelligible forms that do
not involve equations which, as mentioned above, cannot be efficiently used as indices.

In order to capture performance characteristics, current behavior representations and reasoning
mechanisms have to be extended along the following two directions:

"* Representation and reasoning about the ranges of operation of a device, and

"* Representation and reasoning about the type of variation of behavior variables.
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Figure 5-49: Series and parallel elaborations for second-order behavior influence
graphs

5.24.1 Ranges of Operation
All devices have an operating range over which they perform with the desired accuracy, and
outside of which performance may deteriorate. These ranges include temperature, pressure,
humidity, and the ranges of the inputs and outputs of the device. Operating ranges for
continuous-behavior devices can be defined by feasible intervals for the inputs and outputs. A
collection of similar devices, such as gears of different diameters, has the same ontology as long
as the operating range is associated to each member of the family. Given a casebase of devices,
retrieval should be done based not only on the influence graph representing the required behavior
but also on the ranges of operation of the component or sub-assembly. For instance, the indices
for the retrieval of a component could be the influence Displacement --t-+ Flow together with
the ranges of operation for the displacement, [X,, X2], and for the flow, [Qj, Q2]. Only
components (taps in this case) which match these three indices are retrieved.

Ranges of operation for a design case in a database can be represented by either (a) feasible
intervals for inputs and outputs, (b) a mathematical equation that describes the behavior of the
component and relates inputs to outputs, (c) an input-output response curve, or (d) experimental
data, as illustrated in figure 5-50 for one input and one output. An advantage of using
representations (b), (c) or (d) is that the entire ranges need not be matched but only parts of them
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as shown by the solid lines. All these four forms of representation can be made parametric so the
same case can be retrieved for different ranges of operation, as shown by the second response
curve (dashed) in figure 5-50(c)

INPUT :input-t, input-2] output = F (input)
OUTPUT: [output-I, output-2 I

(a) (b)

a.°

INPUT INPUT

(C) (d)

Figure 5-50: Representation of ranges of operation in casebase

For the case where several sub-graphs of an influence graph specification are matched, the
ranges of operation have to be propagated from the inputs and outputs towards the other state
variables. For example, figure 5-51 shows an influence graph specification (possibly after
elaboration of new variables) which is used for retrieval of eight components from a casebase.
Influence arcs are not shown for clarity. The behavior influence graph for each component may
consist of one or more influences. The ranges of operation (variation) of the inputs and outputs
are known and they are used as indices into the casebase for the retrieval of input and output
components 2 3 (components 1, 2, 7 and 8). The ranges of variation of the inputs are propagated
forward and the ranges of the outputs are propagated backward so sets of ranges for the state
variables are generated. These sets are then used together with the influence sub-graphs of each
component as indices to retrieve intermediate components from the casebase (components 3 to
6). Because the retrieval entails perfect matching of influence graphs and ranges of operation of
each component or sub-assembly, the number of feasible designs is greatly reduced in relation to
those retrieved by only matching the influence graphs. Relaxation of the ranges of inputs,
outputs and/or state variables may be needed when no complete design is retrieved. If such is the
case, further tuning of design parameters is necessary so the synthesized device delivers the
specified performance.

23An input (output) component is associated with a subgraph of a behavior influence graph that has nodes with
in-degree (out-degree) zero
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Figure 5-51: Abstraction of influence graph used for retrieval of eight
components

5.24.2 Type of Variation of Behavior Variables
Although ranges of operation capture part of the performance information of a design, including
the order of magnitude of the behavior variables, they are not sufficient to describe in detail a
device response to a given input. That is, the shape of a performance curve is not defined by
only specifying the ranges of variations of the (dependent and independent) variables.

Characteristics of the response curve can be specified by directly attaching certain information to
the qualitative influence graph. For example, if X influences Y positively or negatively, then the
simple influence X-L y can be replaced by the bi-parametric X--(p, q)-- Y where the
parameters p and q capture the shape of the dependency relation, as depicted in figure 5-52 after
normalizing between 0 and 1. The difference (q - p) is a measure of curvature24 since p and q
are defined as the slopes of the response curve at 0 and 1, respectively, and

[~~iianf =J ~fdx = f'(1)-f'(0) = q-p

In order to provide compositionality to the performance representation, an elaboration calculus
for performance relations has been developed. For example, if X influences Y according to (p, q)

and if an elaboration makes X influence Z that in turn influences Y!, then we have to determine
the performance relationships between X, Z and Z, Y. The performances should be such that the

combined performance preserves the original (p, q)-defined relation between X and Y. The

following method seems to be the most appropriate and mathematically sound as shown in the
appendix.

The influence X--(p, q)--- Y can be elaborated in series into:

24In fact, it is the mean of the inverse of the curvature
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Figure 5-52: Families of Monotonic Influences

X--(pl,ql)-->Z and Z--p2,q2)--*Y

where: pl.p2=p ql-q2=q if pl,ql>0, or pl.q2=p ql-p2=q -f pl,ql<O

or in parallel into:

X--(pl,ql)--Z , Z--(p2,q2)---Y and X--(p3,q3)---*Y

where: pl.p2+p3=p ql.q2+q3=q if pl,ql>0, or pl.q2+p3=p ql.p2+q3=q if pl

Figure 5-53 illustrates the above serial elaboration with operating ranges [x,, x,], [y1, Y2] and

[z,, z2] for X, Y and Z, respectively. Each performance relation can be used as a primitive and
can be assembled to predict the performance of the entire influence graph. Only portions of the
ranges of the retrieved components make up the specified operating ranges for X and Y.

Whenever case representation and retrieval is based on the operating ranges of the input and

output (as in figure 5-50(a)) and the parameters p and q characterizing the response curve,
matching portions of operating ranges entails the parametric approximation of the response
function. For xN and YN normalized between 0 and 1, an approximated response function is given
by the following cubic polynomial.

YN = (I(xN) = (p+q-2)xN3+ (3- 2p-q) x22 +pxN

Given the specification influence X-[cz, 13]--(ic, 0)--> Y-[X, 8] where [a, 13] and [X, 8] denote
the operating ranges for X and Y, then case X-[a, b]--p, q)--+ Y-[c, d] is retrieved if and only if
either
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4Y

Figure 5-53: Composition of Performance Characteristics

"* [a, 1] [a, b], [X, 5] - [c, d], ir = p, and 0 = q, as depicted in figure 5-54(a), or

"• [(a, P] [a, b], [. 81] C [C. dl. XN =(aN). 
8 N D(ON), i = D'(aN). 0 = '(PN) as

depicted in figure 5-54(b), where the normalized parameters are defined as follows

a-a -a -- c
ba -a d-c d-c

8 d d

CASE

SPECIFICATION
" "C C1

a b a b
a A a 0

(a) (b)

Figure 5-54: (a) Complete and (b) partial matching of case by specification

Approximate equality "=" has been used to emphasize that perfect matching between case and
specification is not required but only an adequate approximation. However, this may require
tuning of design parameters and verification that the synthesized device performs according to
specification. The level of accuracy for the matching has to be specified beforehand.

Appendix: Proof of Bi-Parametric Influence Elaborations

Proofs of series and parallel elaborations are based on an assumption of continuity,
differentiability and integrability.

Series Elaboration

Let f and g be monotonic functions with domain and range [0, 11. Let h be the composed
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function off and g, i.e., h =fog, so its range and domain is also [0, 1].

The measures of curvature forf, g and h are defined as follows

[TX]Mean = fo' -dx f'(l)-f'(O) = -pf

[a2] = f12gdx = g'(1)-g'(0) = qg-pg

a2h 1 ~
[-],we. = hdx = h'(l)-h'(O) = qh-Ph
ax2  an aX

But

h'(l)-h'(O) = f(g(l)),g'"(l)-f'(g(O)).g'(O)

= f'(1).g'(1)-f'(O).g'(O) if g'([0, 1])> 0

= f'(0).g'(1)-f'(1)g'(0) if g'([O, 1]) < 0

Therefore

qh-Ph = qf'qg--Pf'Pg if g'([0, 1])>0

= pf*qg-qf.pg if g'([0, I]) < 0

Selection of qf, qg, pf and pg such that qh = qf' qg and Ph = Pf'Pg if g is an increasing function,
or qh = Pf qg and Ph = qf'Pg if g is a decreasing function is enough to satisfy the above
conditions.

Parallel Elaboration

Since multiplication of parameters has been proved for influence in series, it is sufficient to
prove the additivity of parameters when the influences are in parallel.

Let f be a monotonic function with domain [0, 1] x [0, 1] and range [0, 1]. We have that

f2f -
2f aIx af a2X1  af a2X

Setting xi and x2 equal to x and taking the mean of the second derivative over [0, 1], we obtain

[hcpoe= [Uaiv + []Mei .
MaX2

which proves the additivity of parameters for influences in parallel.
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Chapter 6

CARD: The CADET casebase

"An excellent technique for utilizing this compilation of laws and effects in problem solution is

to break the problem into input and output physical quantities. As a simple example, you may
want a light signal input and a temperature variation output. First, try bridging the gap directly
with any known effect. If this is unsuccessful, think of a number of physical quantities that are
suggestive as intermediate steps. Light may be converted to resistance, to current, to heat. These
steps may be connected with as many different phenomena as can be recalled from memory. A
number of semi-complete paths will result, each with a different link missing. A renewed search
of unfamiliar laws and effects is certain to complete one or more of these links.

Hix and Alley, Physical Laws and Effects, John Wiley & Sons, 1959

6.25 Introduction
Design is the activity of generating a description of an artifact that meets a set of functional
specifications. The design process is generally classified into conceptual design, parametric
design and detailed design. In the conceptual design phase, the designer explores different
choices of physical effects, geometry and materials to create a set of feasible designs that could
potentially meet the required specifications. During parametric design, the relations between the
different design parameters of the artifact are established and preliminary analysis is performed
to specify values for the parameters. In detailed design, the actual detailing of the artifact is done
with all the specifications outlined. During all these phases, the designer uses his knowledge of

the domain, experiential knowledge gained through previous designs and information from
various disparate sources to aid in the design process. Design is partly adaptive and partly
routine. In adaptive design, old designs are retrieved and adapted for a new functionality.

The basic tenet of this effort is that placing at a designers fingertips the capability to access a
repository of prior designs thorugh a variety of indexing schemes can aid a designer in novel and
routine design.

Experiential knowledge plays a key role in the design activity and can be aided by using
"analogical" inference mechanisms. Designs, if properly indexed and archived, can be
retrieved based on a set of critical "keys". Case-based reasoning (CBR) is a problem solving
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paradigm where previous experiences are used to guide problem solving
[5, 27, sycara.negotiation.87, 18]. Cases similar to the current problem are retrieved from

memory, the best case is identified and compared with the given problem. The case is adapted to
fit the current situation based on identified differences between the precedent and the current
case. Successful cases are archived to be reused in the future. Failed cases are archived to warn
the problem solver of potential failures and help recover from failures. CBR is relevant in
domains where a case can be clearly identified by an expert, cases can be compared and
inferences drawn to solve a new problem, cases can be generalized, and cases retain their utility
over long periods of time.

Engineering design is a domain in which a case-based approach could be very useful [71].

Research in case-based design deals with identifying relationships between artifact behavior and
structure, developing representations that can capture this behavior, inference strategies for
design, indexing schemes to identify key characteristics in tightly-coupled components and
strategies to use cases at different levels of abstraction. CADET is a tool that aids the design
process by retrieving relevant prior designs from a database of designs. The retrieved designs
could then be assembled to meet the functionality required. CARD (Case Retrieval for Design)
which is the elaboration and retrieval module of CADET has been implemented using the case-
based reasoning paradigm for storing and retrieving designs. Designs have been indexed using
"influence graphs" a variant of qualitative algebra [68,46]. CADET is a prototype case-based
design tool for design of electro-mechanical artifacts.

6.26 Description of CADET
CADET is a system that performs conceptual design by synthesizing a device from snippets
accessed from previous design cases. CADET uses a multi-layered representation to express
function, behavior, structure and related constraints. CADET's approach to design has three
main characteristics, (a) transformation of high level functional specifications to a set of
alternative design descriptions that satisfy the given specifications, (b) adaptation of retrieved
previous designs and design pieces to fit specifications and constraints in the current design
problem and (c) synthesis of the most promising alternative(s) from components whose
combined behavior is equivalent to the overall device specifications. The input to CARD is an
"influence graph" that specifies the required behavior of a device and a set of physical
constraints. CARD has access to a case-memory and engineering domain laws and principles.

The system based on the input behavorial specifications performs transformations of behavorial
indices and uses these indices to retrieve and match cases from the case memory. Details
regarding the behavorial transformations are presented in [47]. CARD has been implemented in
COMMON LISP. To deal with issues of scalability, cases i.e. previous designs are stored in the
Informix relational database. The current implementation supports a LISP-SQL interface and is
used to extract data from the database as and when required during the design process. The
overall system architecture showing CADET and CARD is in Figure 6-55.
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Figure 6-55: CADET system architecture

6.26.1 Case representation
A case-base has to be indexed properly so as to aid the retrieval process. Cases in CARD could
be indexed based on a number of abstractions. The abstractions that could be used are:

* Linguistic descriptions.

* Behavorial descriptions through the use of influence graphs. Qualitative states.

* Pictorial descriptions through sketches, solid models and schematic diagrams.

* Structural features including material,shape and device topology.

* Manufacturing descriptions through use of process plans and assembly plans.

* Performance attributes such as cost, reliability, availability, material, and weight.

In this implementation, the indices for cases are influence graphs. In CARD, device behavior is
represented as a collection of influences among various inputs and outputs. An influence is a
qualitative differential (partial or total) relation between two variables one of which is a
dependent variable and the other an independent variable. Influences are organized as graphs. An
influence graph is a directed graph whose nodes represent the variables of concern and whose
arcs are qualitative values (+,-,0) depicting the influence of one variable on another. The
influence sign denotes the monotonicity the first order differential between the two variables of
interest. These graphs of influences are used to represent the behavior of devices, where each
influence corresponds to some physical effect.

Consider, for example, a Pascal press which is hydraulic device for pressure amplification.
Figure 6-56 shows a two and a half dimensional representation of the press. Input pressure is P 1
and the output pressure is P2. As P1 increases, P2 increases or when P1 decreases, P2 decreases.
This represented as P1 {-(+)->}P2 which is an influence meaning that the output pressure
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increases monotonically with the input pressure. The ratio of the pressures is equivalent to
Ali/A2 but is not necessary to denote the relation between the pressures. In the LISP
representation an influence is denoted as a list [(P1 P2 +)) i.e. I (left-parameter right-parameter
sign)}. An influence graph is a list of influences. Consider a cascade of Pascal presses (see
Figure 6-56). P 1 is the input and P3 is the output. The influence graph is denoted as ((P1 P2 +)
(P2 P3 +)).

(see next page)

Figure 6-56: A Pascal press

Cases are represented in LISP as follows:

;;;Defstruct definition for a case
(defstruct case

devicename ;symbol
compname ;list of components
infllist ;list of list of influences (((left right sign) (1

;right sign)). Each element in the list correspond
;a component's influences

devicetype ; Name
prop-list ; List of properties of the device

)

Files containing such structures can be created using an editor and saved. For example, the
following is a file case.lisp containing two cases.

(cal cs2)
#s(CASE DEVICE_NAME SPRING-2 COMPNAME (SPRING-2) INFL_LIST

(((FORCE-I TRANSLATION-DISPLACEMENT-1 +)
(FORCE-I ELASTIC_ENERGY-I -)))
DEVICE_TYPE SPRING
PROP_LIST ((20 10 BRASS 10 20 30 30 10 70 10)))
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*s(CASE DEVICE_NAME SPRING-4 COMP_NAME (SPRING-4) INFLLIST
(((TRANSLATION-DISPLACEMENT-1 FORCE-I -)
(TRANSLATION-DISPLACEMENT-1 ELASTIC_ENERGY-I -)))

DEVICETYPE SPRING
PROP_LIST ((10 30 STEEL 10 20 30 30 20 20 20)))

The first line in the file is a list of symbols identifying the case structures. The first structure
refers to a spring denoted by DEVICENAME. It has one component, the spring itself denoted
by COMPNAME. If there are multiple components, they should be listed together. The
INFL_.ST slot refers to the influence lists for each of the components. For example, consider a
case with two components. ( COMP_NAME (a b)). Then INFL_LIST is ((list of influences of
component a) (list of influences of component b)). In the case of the spring there is only one
component and its list of influences (the influence graph) is listed. The slot DEVICETYPE
denotes the domain of the device such as electrical, hydraulic, mechanical and magnetic and is
the general device name. The PROPLIST slot is a list of property values. The properties
considered are cost,weight, type of material, qualitative cost, qualitative weight, availability,
demand, reliability, adaptability and performance. The property definitiosn are presented below.

These structures can be loaded into the lisp environment by using the functions in the file
case..input.l These structures are normalized and then loaded into a relational database.
Normalization is a relational database operation by which many-to-one and one-to-many
relationships among entities are converted to one-to-one relationships. On normalization of
influences, in the case of the spring two lists result.

* ( SPRING-2 SPRING-2 FORCE-I TRANSLATION-DISPLACEMENT-.1+) (
SPRING-2 SPRING-2 FORCE-i ELASTICENERGY-i -)

The one-to-many relationship between a component and its influences is resolved into one-to-
one relationships. Each of the above list then forms a tuple in a relational database.

The database consists of two tables, Influences and Properties The Influences table has the
following columns:

DEVICE NAME -- Name of the device COMPONENT NAME -- Component of the
above device LEFT-INFLUENCE -- Left parameter in an influence. This is the
input parameter. RIGHT-INFLUENCE -- Right parameter in an influence. This is
the output parameter. SIGN -- Sign of monotonicity relationship between
parameters (+, - or 0)

Each tuple is a horizontal row in the table. See Figure 6-57.

Similarly, on normalization, the PROPLST slot yields the following list for the spring,
SPRING-2:

e (SPRING-2 SPRING-2 SPRING 10 20 BRASS 10 20 30 30 10 70 10)

If a device has multiple-components, each component would yield one list on normalization. The
above list (a tuple) is then an entry into the Properties table. The Properties table has the
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Figure 6-57: Relational database tables

following columns:

" DEVICE NAME - Name of device (e.g. SPRING-2)

" COMPONENT NAME -- Name of component (e.g. SPRING-2)

"* DEVICE TYPE -- Electrical, hydraulic, mechanical, magnetic (e.g. SPRING)

"* COST -- Cost of the component (e.g. 10)

"* WEIGHT -- Weight of the component (e.g. 20)

"* MATERIAL -- Material of the component(e.g. BRASS)

"* QUALITATIVE COST - A ranking between 0 and 100 (0 is low cost) (e.g. 10)

* QUALITATIVE WEIGHT -- A ranking between 0 and 100 (0 is low weight) (e.g.
20)

"* AVAILABILITY -- A ranking between 0 and 100 (0 is high availability) (e.g. 30)

"* DEMAND -- A ranking between 0 and 100 (0 is low demand) (e.g. 30)

"• RELIABILITY -- A ranking between 0 and 100 (0 is low reliability) (e.g. 10)

"• ADAPTABILITY - A ranking between 0 and 100 (0 is low adaptability) (e.g. 70)

"* PERFORMANCE -- A ranking between 0 and 100 (0 is low performance)) (e.g. 10)

In the list generated on normalization, the ordering of the elements corresponds to the order of
properties listed above.

Each case is a device and is assumed to be an assembly of components with a specific behavior.
If the component is part of a device, only a part of those influences might be relevant for
behavior in that device and only those influences should be listed in the database. Different
devices can be made with piece-meal selections of components and assembling them.
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Components and sub-assemblies form snippets of a case while a device is a complete case by
itself.

The vocabulary that describes the types of parameters that arise in the influences is ts follows:
" FLUIDIC

• FLOWVOLUME

"* FLOWRATE

"* FLOWRATE-LIQUID

"• FLOWRATE-LIQUID-WATER

"* FLOWRATE-LIQUID-OIL

"* FLOWRATE-GAS

"* FLOWRATE-GAS-AIR

-PRESSURE

"* PRESSURE-LIQUID

"* PRESSURE-GAS

"* PRESSUREMOMENTUM

"* KINEMATIC

* TRANSLATION

* TRANSLATION-DISPLACEMENT

* TRANSLATION-VELOCITY

• TRANSLATION-ACCELERATION

* ROTATION

* ROTATION-DISPLACEMENT

* ROTATION-VELOCITY

* ROTATION-ACCELERATION

* KINETIC

"* FORCE

"• LINEARMOMENTUM

-TORQUE

• ANGULAR_MOMENTUM

-STRESS

• THERMAL
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"* TEMPERATURE

"* ENTROPY..FLOW

"* HEATENERGY

"* HEATFLUX

*FORM

-LENGTH

e*AREA

-VOLUME

"* ANGLE

"* MASS

"* MOMENT_OF-INERTIA
ELEC'TRICM-AGNETIC

-VOLTAGE

a CURRENTf

-CHARGE

"* FLUXLINKAGE

"* ELECTRICENERGY

"* MA4GNETIC_jENERGY

"* ELECTRICPOWER

"* MAGNETIC_FLUX_DENSITY

"* CAPACITANCE

"* RESISTANCE

* INDUCTANCE

o MECHANICAL ENERGY

"* GRAVITATIONAL._ENERGY

"* KINETICENERGY

"* ELASTIC_ENERGY

"* MECHANICALPOWER

o TEMPORAL
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-FREQUENCY

e PERIOD

Parameters are named according to the following convention:
"* For any parameter append a suffix integer. For example ANGLE-i and ANGLE-2

are two parameters.

"* Make sure that two parameters that mean different physical values do not have the
same name.

* Unknown variables instantiated by the system during elaboration of a specification
are represented by UNKN-1, UNKN-2, etc.

The present number of cases is 125. The relational database that stores the case is defined by the
variable *database* in the system. Also the shell environment variable DBPATH must be set to
the path where the database is located. Cases were obtained through a number of sources. A
summary list of the sources is as follows:

* The Way Things Work.

* Commercial catalogs.

o Artobolevsky's Mechanisms in Modem Engineering Design.

9 Grafstein's Pictorial Handbook of Technical Devices.

They are in the sub-directory textdb. The domains they cover are:
"* displacement transducers

"* springs

"• force and torque transducers

"• steam turbines

"* hydromechanical

"* temperature transducers

"* machine elements

"* transformers

"* pressure regulators

"* velocity and acceleration transducers

"* pressure transducers



106

6.26.2 Case Retrieval
Input specifications to CARD is an influence graph describing the required behavior. Cases are
retrieved from the case base if valid solutions are available otherwise a process of "elaboration"
is carried out and a set of new influence graphs generated. Elaboration [47] is of two types,
serial and parallel elaboration and follow rules of qualitative algebra. Each elaboration
introduces an unknown variable in the initial graph. It is represented by a symbol like UNKN-1
where the suffix integer identifies the number of unknown variable. Both serial and parallel
elaboration, generate a set of influence graphs with a different topology than the initial influence
graph. The elaboration process is explained further in later sections.

6.27 Getting Started

6.27.1 Sources
CARD1.0 is intended to be completely portable and should run under any Common Lisp
implementation. CARD1.0 can be obtained through anonymous ftp from ftp.cs.cmu.edu.
Change directory to /afs/cs/projectlcadet/flp. The file cardlO.tarZ can be retrieved. After
retrieval, type zcat cardl.O.tar.Z I tar xvf - to recreate the sub-directory structure. Edit path
variables in cardsystem to reflect the new directory structure.

6.27.2 Setting up the database
A relational database such as INFORMIX is required 25. Two tables influences and properties
tables must be created in these databases. The tables can be created using the createdb SQL
command or the 4GL interface provided with these databases. The columns for the tables are
described in Section 4. After creating the tables, set the shell variable DBPATH to the directory
where the database is located. Edit the cadetsystem file and set *database* to the name of the
database. Also set *MAIN-PATH* to the path where the CARD files are located. The file
sqllc...sqLec needs to be compiled using the libsqLa. For Informix systems, it can be compiled
using esql -c -G 0 csqLec. A file c-sqLo. If there are problems in compilation for other
database systems, some of the basic Embedded SQL function call names might be different and
have to be changed accordingly in the .ec files and recompiled. If no database system is
available, the cases can be stored as structures in the LISP environment. A manual that describes
the LISP-SQL interface between Informix and Allegro CL26 is available in the doc sub-
directory. A minimal set of LISP functions that provide access to the RDBMS is described. C
functions that contain embedded SQL functions are compiled into object code and accessed from
LISP through the foreign function interface. Different databases and LISPs might have different
foreign function implementations and associated libraries. Setting up the interface for an

2INFORMIX and RDSQL is a registered trademark of Relational Database Systems, Inc
26Allegro Common Lisp is a trademark of Franz Inc.
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INFORMIX DBMS is described in the following section. The retrieval function that matches the
influences in the case structures is to be coded and called from the search functions. The search
and retrieval functions are described in later sections. Details regarding bugs, suggestions can be
sent to madhu@ri.cmu.edu. CARD is available free of charge and without any restriction.
Please send mail to the above address if you obtain a copy anyway so that we may keep track of
who has obtained a copy and keep users informed of enhancements and bug-fixes by the way of
a mailing list.

6.273 Setting up the system
The location of the foreign function libraries for the Common Lisp being used need to be
identified and the file cadetLsystem file has to be edited. Foreign function libraries that are
required with an INFORMIX database are:

"* libsqLa

" libutiLa

"* librds.a

"* libc-g.a

The above libraries might be different for other databases. The module foreignI needs to be
edited in cardisystem. Start up lisp ( cl, isp) and load the file defsystem.lisp. Load card.system
(after editing it to reflect the above mentioned changes).

6.27.4 Using the system
Assuming that the database has been created and the necessary tables created, the following steps
have to be followed to load and query the database:

1. Startup common lisp.

2. Load the file defsystem.lisp.

3. Load the file cardsystem.

4. To load all files, type (card) at the LISP prompt. Respond accordingly to the the
prompts, the system will load all the files. At this stage you might get errors if the
library files are not available.

5. To load the database:

;To load all the cases into the database defined in *da
;Assuming the relational database has been setup.
> (create-casebaso *database*)
;This function is in the file interface/ui.l
;If no database has been set up, the case structure fil
;loaded directly

6. Once the casebase is created, the system can be queried. The input to the system is
an influence graph. Let us say one is looking for a device that causes a pressure
variation with force. %Also you want to use an intermediate variable.
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7. >(setq inf •((FORCE-i UNKNi +) (UNM11 PRESSURE-_ -)))

8. You have set inf to the behavior specification. To elaborate and retrieve cases,

type

9.>(elabsearch inf)

10. The following is a trace as the system searches for a set of cases that match the
specification.

l1.Elaboration and Retrieval search begun....
Retrieval search for ((FORCE-I UNMN1 +) (UNK

Expanding Retrieval node SNODE0
Influence is (FORCE-i UNKNI +)
Number of new retrieval child nodes is
Expanding Retrieval node SNODEI
Influence is (TRANSLATION-DISPLACEMENT
Number of new retrieval child nodes is

12. The output of the system is as follows:

13. Elaborated influence is ((FORCE-1 UENi +) (FORCE-1 UNK
(UNKN97 PRESSURE-I +) (UNKNI PRESSU

Alternative solutions (sets of cases) for the above in
((PISTON-PUMP-i PISTON-PUMP-2 TURNING-VALVE-2 TURNING-

(PISTON-PUMP-i PISTON-PUMP-2 TURNING-VALVE-2 SLIDING-
(PISTON-PUMP-I PISTON-PUMP-2 PISTON-PUMP-i TURNING-VA
(PISTON-PUMP-i PISTON-PUMP-2 SLIDING-VALVE-i TURNING-
(PISTON-PUMP-i PISTON-PUMP-2 SLIDING-VALVE-i SLIDING-
(PISTON-PUMP-i PISTON-PUMP-2 PISTON-PUMP-i SLIDING-VA

14. The initial specification has been elaborated and a set of matching cases are found.
In this example six solutions that match the influence graph have been found. Each
set of cases is then presented. Consider the solution (PISTON-PUMP-i PISTON-
PUMP-2 TURNING-VALVE-2 TURNING-VALVE-2). The first device
PISTON-PUMP-1 corresponds to the first influence (FORCE-1 UNKNi +), the
second device to the second influence and so on. The output is a connectivity graph
denoting the way the devices should be assembled together based on the topology
of the corresponding influence graph. In Figure 6-58, the graph on top is the
topology of the elaborated influence graph. For each arc in this graph, there is a
corresponding device in the graph shown at the bottom of the figure. The
connectivity graph is a dual of the influence graph. The device
TURNING-VALVE-2 has been retrieved twice for two different influences.

15.

The next version shall include an interface to view the influence graph and connectivity graph.
At present this interpretation has to be performed manually. Elaboration and retrieval processe
are interleaved to search for feasible solutions. The file EXAMPLES contains examples of the
functions and the options that can be used with the system. Also a number of additional
examples showing the influence graph and the output are in the file EXAMPLES. One can
generate multiple number of solutions by defining the number of elaborations required and the
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UNKN-i

FORCE-1 PRESSURE-1

UNKN97

INFLUENCE GRAPH

PISTON-PUMP-1 TURNING-VALVE-2.I I
PiSTON-PUMP-2 TURNING-VALVE-2

CONNECiWIITY GRAPH

16. Figure 6-58: Influence and Connectivity Graphs

number of cases required for each elaboration.

6.28 Bugs present and Fixes
CARD is a research prototype and might have conceptual bugs as well as programming errors.
%Bugs that have been identified so far are: Run the examples. The test functions cover all the
functions in the code and return the right results. Errors in creating the case-base files, data-base
retrieval errors, memory-problems in the LISP-SQL interface are highly probable. It is probable
that a segmentation error (memory violation) occurs when the query functions interact with the

database. The system will hang and needs to be restarted. This may happen due to non-
availability of free memory from the stack.

Common errors committed by users are:

"* Not enclosing influences in a list like (infi inJ2..) where inf is of the form (a b +).

"* Errors also could occur when a case is not represented properly in the case base.
Incomplete influence lists and bad parenthesis locations are potential bugs.

Please be careful to avoid them. For clarifications, bug-fixes and suggestions, send E-mail to

madhu@cs.cmu.edu.

6.29 Index transformation and Retrieval
The input to the system is a behavior that is desired and is represented as an influence graph as
shown in Section 2. The case-based design system works through a process where elaboration
and retrieval are interleaved. The main algorithm consists of two search algorithms described by
ELAB_SEARCH and RETRIEVAL_SEARCH. Both these algorithms take an influence graph as
an input.
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Algorithm ELABSEARCH is as follows:
1. Read input influence graph. Create a node structure.

2. Call it ELAB-ROOT-NODE. The structure of a node is as follows:

(defstruct node ;; node structur
name ;; node name
parent ; parent node o
children ;; child nodes
value

) ; ; value stored

3. Value slot of the above node consists of the following structure:

(defstruct elab
infgraph ;;The elaborated influence graph
cases ;;The case/cases that match the a

4. Store the influence graph in the slot of elab structure. Create two lists namely
LIST and RESULTS. Put the node in LIST. If LIST is nil, STOP and return
RESULTS.

5. Select the first node from LIST and call it NODE.

6. Call RETRIEVALSEARCH with the influence graph in the elab structure of
NODE. Put the return value in the cases slot of the elab structure of NODE. Also
put a list of the cases returned into RESULTS.

7. If RESULTS is not nil, stop and return RESULTS.

8. Elaborate NODE. For each influence graph of the elaboration, generate a node
structure and the corresponding e/ab structure. Collect the nodes into LIST.

9. Sort LIST based on the distance from ELAB-ROOT-NODE.

10. Go to step 2.

Algorithm RETRIEVALSEARCH is as follows:
1. Read input influence graph and call it GRAPH. Create two lists namely, OPEN and

CASES. Create a node structure. Call it RETRIEVAL-ROOT-NODE. It has the
following node structure:

(defstruct node ;; node structur
name ;; node name
parent ; ; parent node o
children ;; child nodes
value

) ; ; value stored

2. Value slot in the above node contains a list of two structures:

;;;Structure of a case that matched an influence at the
(defstruct match ;;Symbol is MT

orig-right ;;original right match
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orig-left ;;original left match
right ;;case right
left ;;case left
sign ;;case sign
device-name ; ;device-name
coup-name ; ; coup-name
rank ;;Evaluation function va
synthesis-measure ;;synthesis measure. .a h

; ;;allocated dynamically
perf_chars ;;a list of performance

;;component.;; list as c
)

;;;Stores the remaining influence graph to be matched w
instantiated parameters.

(defstruct matchinfo ;;Symbol is MI
inf-graph ; ;The inf-graph remaining to b

3. Consider the first influence of GRAPH and call it INDEX. Call the list of
remaining influences REMAINING-GRAPH. Set the orig-righ4 orig-left and

sign slots of the match structure to the right parameter, left parameter and sign of

INDEX. Set the inf.graph slot of match info structure to REMAINING-
GRAPH. Put the node in OPEN.

4. If OPEN is nil, stop and return CASES. Select first element of OPEN. Call it RET-

NODE.

5. If the inf graph slot of the match info structure of RET-NODE is nil, then stop.
Return CASES.

6. Set INDEX to influence created from the orig-right, orig-left and sign slots of the
match structure of RET-NODE.

7. Set REMAINING-INDEX to inf graph slot of matchinfo structure of RET-
NODE. Then do

"* If INDEX is nil, trace path from the root of the tree to RET-NODE and
return the list of cases and associated influence created from right,left and
sign slots of match structure in CASES. Search database to retrieve all
instances of INDEX in different components of different cases in the data-
base.

"* There are three possible forms for INDEX:

"* Both left parameter and right parameter are known. Then cases that
have that particular influence with the required sign are retrieved.

"• Left parameter is unknown (specified as UNKN-1, UNKN-2, etc. in
the influence). Then cases that match the right parameter and the sign
are retrieved. Right parameter is unknown (specified as UNKN-1,
UNKN-2, etc. in the influence). Then cases that match the left.
parameter and the sign are retrieved.

"* Each retrieved case is a list consisting of five elements which are the device
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name, component name, the left parameter, the right parameter and the sign
i.e. all the tuples containing the influence are retrieved. Also retrieved is the
properties of each component in which the influence occurs and the
perf.hars slot of match structure is set.

* If INDEX has no unknowns, associate the names of all the matched cases
with INDEX. Do

"* If there are unknown parameters in INDEX, find all influences in the
retrieved cases that match the known part of the influence. Call these
influences MATCHINGS.

"• For each influence (X) in MATCHINGS, create a copy of
REMAINING-INDEX, replacing all occurrences of the unknown
variable in INDEX, by the corresponding variable in X.

"* Associate with each X, the case that contains the influence and the
corresponding REMAINING-INDEX.

"• Create new nodes for each of the matched cases and the associated
REMAINING-INDEX. The match structure takes the first influence of
REMAINING-INDEX. The match_info structure takes the rest of
REMAINING-INDEX.

"* Store them as child nodes of RET-NODE. Put a list of these nodes in OPEN.

8. Sort OPEN in the increasing order of the rank slot of the match structure of each
node. The rank is calculated through an evaluation function on the properties of the
case that is retrieved from the case-base. Go to Step 2.

6.29.1 Elaboration tree
Algorithm ELABSEARCH creates a elaboration tree. The elaboration tree is persistent till the
final solution for the input graph is found. The search can also be stopped by setting a limit on
the depth of the elaboration tree through the parameter *elab.tree.depth*. The parallel and serial
elaboration process create a large number of children nodes. If the initial influence graph consists
of two influences, then on elaboration eight child nodes would be created, two through serial
elaboration and six through parallel elaboration. See Figures 6-59,6-60. In Figure 6-60 the new
influences have negative signs and the qualitative relationship between ab and c is not violated.

The elaboration tree is as in Figure 6-61.

The branching factor of the elaboration tree grows with each level of elaboration exponentially
as new variables are introduced at each level.

As one can see, the number of nodes grows very fast. So retaining a small search space is
essential. Two rules are incorporated in the system to reduce the search space of the elaboration
tree. The rules are:

1. In an influence graph of the form ((a x] +) (xl x2 +) (x3 b +)) where a and b are
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(see next page)

Figure 6-59: Elaborations-I

Parallel Elaboration IV

xl

a b + c

Parallel Elaboration V

a += b + C

Parallel Elaboration VI
xl

a rb ..

Figure 6-60: Elaborations-II

parameters and xlx2, x3 are unknowns; all the influences containing the input
parameters (a xl +) and output parameters (x3 b +) must be matched with cases in
the case-base using RETR SEARCH. If for any one of those influences no
matches can be found, it is futile to elaborate and match any further as no solutions
can be found for any new elaborations.

2. A parallel elaboration will not lead to any successful retrievals if the serial
elaboration that is embedded in the parallel elaboration with one less unknown
variable is unsuccessful. For example if the serial elaboration ((a xl +) (xl b +)) is
unsuccessful, the parallel elaborations ((a xl +)(a x2 +) (x2 b +) (xl b +)) and ((a
xl +)(a x2 +) (x2 xl +) (xl b +)) and ((a xl +)(xl x2 +) (x2 b +) (xl b +)) will all
be unsuccessful.
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Figure 6-61: Elaboration tree

The system retrieves solutions for three alternative elaborations. This is defined by the variable

*ekab-aitj*. This can be bound to any value as required to generate a specific number of

solutions. From a theoretical point of view, issues of interest are the completeness of the search
process. The elaboration can also be guided by the use of physical laws. Physical laws indicated
certain relationships between parameters and allow only certain kinds of influences. They can be
used to instantiate unknowns in the influences and focus the search. Physical laws can also be
used to verify the existence of certain influences in a graph for which no matches may be found.
If there are physical laws that suggest the feasibility of an influence then it is physically possible
to synthesize an artifact that has the concerned influence behavior.This is being implemented as
part of the next version of this system.

6.29.2 Retrieval tree
Algorithm RETR_SEARCH creates a retrieval search tree rooted at each node of the
elaboration tree. The retrieval search tree for the graph ((a x! +) (xl b +) (b c +)) is shown in
Figure 6-62

The retrieval search tree is destroyed after a search is performed. During the retrieval search
process, best-first search is employed. The best node for expansion is chosen based on the case
retrieved at the node. A complete topology of both searches is shown in Figure 6-63.

6.30 Useful functions
The retrieval search returns a number of alternative sets of cases that could potentially satisfy a
given influence. The number of alternative solutions is defined by the variable *num-alts*.
This can be bound to the number of solutions required by the designer. The total number of
solutions provided is then the product of the *num-alt* and *elab-a/I*. During retrieval, one
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Figure 6-63: Elaboration and retrieval search

might like to impose constraints on the search. These constraints can be of three specific types:

* Case constraints: Constraints indicate if a particular case (component) must be part
of the solution or not. One might not want a case that has a certain side-effect or a
device with a particular geometry.

o Influence constraints: Constraints might dictate the inclusion or absence of certain
types of influences or relations between parameters.

* Parameter constraints: Constraints might dictate the inclusion or absence of certain
types of parameters in the influences.
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Chapter 7

The Lisp-C-ESQL interface to a
Informix Relational Database &
CADET Case input and storage
mechanisms

7.31 Introduction
CADET is a design tool using the case-based approach. It retrieves relevant cases and their
attributes during design based on a number of indices. Case input and retrieval are prirmary
issues in a case-based system. Cases are a high level abstraction of data catering to wide variety
of lower level representation mechanisms. The relational database is one of the many data
structures that can be used for storing data permanently and also it can handle large data sets.
Commercial relational databases are well developed and standardised. Their use guarantees
portability of cases and also a uniform language for their input and use. In CADET, cases are
stored in a relational database (INFORMIX) as a series of tables. Indices are defined based on
the various columns of the tables. The design logic has been implemented in LISP and an
efficient interface is required to manipulate and manage data in the relational database from the
LISP environment. This document presents a library of functions in LISP that have been
implemented using Embedded-SQL (ESQL), C and LISP. Also a case input module has been
implemented so as to enable the user to input cases into the database.

The documentation is organised as follows:
"* The first section describes some of the essential details regarding the

implementation.

"* The second section describes all the functions that are available and examples of
their usage. Also a brief description of useful SQL commands is provided.

"* The third section caters specifically to Case input in CADET.

"* Functions to be used for the same are outlined. Also a session with the system is
illustrated.
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* The final section outlines some of the further additions to be made to the library of
functions and highlights the utility of this library.

7.31.1 Implementation issues
Relation databases provide a language called Embedded SQL for accessing databases from
programs written in languages like C, ADA and PASCAL. Embedded SQL [informix] provides
all the essential functionalities of SQL and a set of mechanisms to handle data 10. Commercial
impleme.ntations of LISP provide foreign function interfaces to access code written in other
languages especially PASCAL, FORTRAN and C. These foreign function interfaces are
different from one implementation of LISP to another and minor modifications might be
necessary to port from one to the other version. The implementation described herein uses the
Allegro Common LISP foreign function interface [allegro], Informix ESQL and ANSI
C. Conversion from one data type to another (from the database to C and then to LISP or vice-
versa) is a critical issue and varies among the the different versions. While using the library
developed these issues will have to be taken care of.

In the set of functions implemented here, the arguments are mainly strings as will be clear in the
next section. Parts of a regular SQL statement have been parametrized so that a variety of data
manipulation calls can be handled. The code has been tested to some extent and no error
handling and recovery mechanisms have been provided for yet. If the function arguments are
passed properly, the functions should execute in the expected manner. Otherwise there is an error
in function calls.

7.32 Description of LISP-SQL functions
e (CREATEDB "dbname")

> (createdb ''cadet'')

* The above statement creates a database called cadet in a directory defined in the

environmental variable DBPATH.

• (CREATETABLE "dbname" "tablename" "( "colname" "datatype" )")

> (create_table '-cadet'' "Itesti" '%I( "devicenamen"

"* The above statement creates a table testl consisting of two columns devicename and

number of the data types defined above.

"• (DESTROYDB "dbname")

> (destroy-0db ''cadet")

"• The above statement delates a database called cadet in a directory defined in the
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environmental variable DBPATH.

* (DESTROYTABLE "dbname" "tablename")

* > (destroy-table ''cadet'' ''testi'' )

e The above statement destroys table test 1.

* (ADDCOLUMN "dbname" "tablename" "new-column" "new data type")

* > (add&column "'cadet" ''testi" ''device-type", ''c

* The above statement adds a new column called devicetype to table test 1.

* (DELETECOLUMN "dbname" "tablename" "column" )

* > (delete-column ''"cadet'' ',test1'' "device-type•')

* The above statement deletes column called devicetype in table testl.

* (MODIFYCOLUMN "dbname" "tablename" "columnn" "new data type")

* > (modify column ''cadet" ''"testi" •"device-type"'

"* The above statement changes datatype of column called devicetype in table testl to
integer from what ever it was before.

"* (DELETEROWS "dbname" "tablename" "condition")

> (deleterows "cadet" ''testIl" ''devicename n

"* Here we delete all rows in table test 1 where devicename is TAP. Other conditions
as defined in SQL also can be used.

"* (INSERTROWS "dbname" "tablename" "(vall,val2)")

> (insert_rows ''cadet"' "1test1'' %'( "TAP N,12)'')

"* Here we insert a row in table testl where devicename is TAP and the number is 12.
The list of value should contain values for all columns.

"* (SELECTROWS *output-buffer-index* "dbname" "tablename" "conditions")

> (read-from-string (select_rows *output-buffer-index
device_name = "TAP"•"))

"* A list of unique rows where the devicename is "TAP" is returned.

7.32.1 Error messages
All the above functions except selectrows return a 1 to indicate success and -1 for a failed
operation. The function selectrows returns a list of rows satisfying all the conditions or nil as the
case may be. Handling of different data types and their conversion schemes have not been
debugged completely. They shall be fixed in forthcoming revisions. Care has to be taken about
escaping the quotes inside a string. The format statement can be used to create such strings.
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7.32.2 Usage of the functions
This interface can be used in a number of ways. It can be used for data retrieval and storage
during search (like storing a large set of nodes). The data base can also be used as an additional
datastrl-ture for regular programs though question regarding efficiency and speed arise. The
data can also be deleted as and when required.

7.33 Cadet case input
A case input module has been implemented for creating cases and loading them into the
databases. The cases are stored in a text file and then loaded into the databases. Some essential
functions are as follows:

(INPUTCASES { @em flag)) ; {@em flag) takes values 0 or 1. zero meaning the
user wants to input cases and 1 to proceed with the program. (INPUTCASES-
FROMFILE "filename" "dbname") inputs cases that have been stored in a file
into a database.

The home directory /usr0/madhu has been divided into a number of subdirectories. Please peruse
the README file at the top-level. Users work in the Workspace directory. A copy of the text
file of cases is stored in -/textdb. After your session delete the file in the Workspace directory.
Take care to have ( @em distinct) filenames. Files will be { @rem overwritten) if the same names
are used. The next section describes an example session.

7.34 An example session
The session transcript is described after logging on to the account. Comments are included in the
transcript after a *NOTE*.

(CADET.madhu) > cd Workspace
(CADET.Workspace) >cl
Allegro CL 3.1.12.2 (DECstation] (11/19/90)
Copyright (C) 1985-1990, Franz Inc., Berkeley, CA, USA
*_CADET_*>(input_cases 0) *NOTE* : Note fla

-- CASE INPUT PHASE - -

-- CASE TEXT FILE CREATION --
-- CASES WILL BE LOADED INTO DATABASE --

"Do you want to input a case ? Say (y/n) "y

Device name is ? - LIGHT_BULB

Components of the device are - List them with spaces - LIGHTBUL

Component is LIGHT_BULB
Input number of Edges/Influences ? - 1

Influences are : (leftinf right-inf sign) - ELEC LIGHT +
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Device type is ? - ELECTRICAL

Component properties input
Component is LIGHTBULB
Cost of the device is - ? 100

Weight of the device is - ? 12

Material of the device is - ? GLASS

Qual cost of the device on (1 .. 100) is - ? 1

Qualweight of the device on (I .. 100) is - ? 1

Availability of the device on (1 .. 100) is - ? 1

Demand of the device on (1 .. 100) is - ? 1

Reliability of the device on (1 .. 100) is - ? 11

Adapatablity of the device on (1 .. 100) is - ? 1

Performance of the device on (I .. 100) is - ? 1

"Do you want to input a case ? Say (y/n) "n
-- Output file name is ? - datal *NOTE* Filename is

*_CADET-_*>(input_cases_fromfile "datal" "cadet")
*NOTE* Load cases

into cadet

*_CADET_*> (read-from-string (select-rows *output-buffer-index*
"cadet" "influences" "where device-name = "LIGHTBULB" "

((LIGHT_BULB LIGHT_BULB ELEC LIGHT +)) *NOTE* A check if t
have been lo

A suggestion is while experimenting with the input module, create temporary databases or create

multiple copies of cadet in the /usrO/madhu/database directory and use them to test the functions.

Your suggestions for modifications are welcome.
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